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Elastic 3-D Alignment of Rat Brain
Histological Images
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Abstract—A three-dimensional wavelet-based algorithm for
nonlinear registration of an elastic body model of the brain is
developed. Surfaces of external and internal anatomic brain
structures are used to guide alignment. The deformation field
is represented with a multiresolution wavelet expansion and is
modeled by the partial differential equations of linear elasticity.
A progressive estimation of the registration parameters and the
usage of an adaptive distance map reduce algorithm complexity,
thereby providing computational flexibility that allows mapping
of large, high resolution datasets. The performance of the algo-
rithm was evaluated on rat brains. The wavelet-based registration
method yielded a twofold improvement over affine registration.

Index Terms—Brain mapping, elastic deformation, neuroinfor-
matics, nonlinear registration, wavelet.

I. INTRODUCTION

T HREE-DIMENSIONAL (3-D) image registration is es-
sential in various computer-vision tasks and as such has

been intensively investigated over the past decades. Registra-
tion has been applied to many applications including 3-D re-
construction, surveillance operations, efficient image/video rep-
resentation and retrieval, and medical imaging, albeit with dif-
ferent registration techniques and with different performance re-
quirements. In medicine, image alignment is used to fuse com-
plementary information in order to improve visualization of re-
gions of interest for clinical or research purposes. A survey of
various medical image registration techniques can be found in
[1]–[3].

A common biomedical problem where image registration
has been employed is in mapping newly acquired experimental
datasets onto a reference atlas. Registration in this case fa-
cilitates automatic segmentation. Alignment of biomedical
intersubject images requires a registration algorithm that will
compensate as much as possible for geometric variability
among individuals. Numerous methods that account for
nonlinear differences between subjects have been proposed

Manuscript received June 9, 2003; revised August 25, 2003.This work was
supported by the National Institutes of Health (NIH) under Award NS07440.
Asterisk indicates corresponding author.

*S. Gefen is with the Computer Vision Laboratory for Vertebrate Brain Map-
ping, Department of Neurobiology and Anatomy, Drexel University College
of Medicine, 2900 Queen Lane, Philadelphia, PA 19129-1096 USA (e-mail:
sgefen@drexel.edu).

O. Tretiak is with the Electrical and Computer Engineering Department,
Drexel University, Philadelphia, PA 19104 USA.

J. Nissanov is with the Computer Vision Laboratory for Vertebrate Brain
Mapping, Department of Neurobiology and Anatomy, Drexel University
College of Medicine, Philadelphia, PA 19129-1096 USA (e-mail: nis-
sanov@drexel.edu).

Digital Object Identifier 10.1109/TMI.2003.819280

including modeling one subject as an elastic deformed version
of another. For example, Duchon [4] and Meinguet [5] intro-
duced the thin-plate splines (TPS) algorithm as a mathematical
interpolator. Later, Goshtasby [6] and Bookstein [7] applied
this interpolator to two-dimensional (2-D) image registration.
Gabrani and Tretiak [8], [9] extended Bookstein’s method
to 3-D image registration. Since then many extensions and
improvements to Bookstein’s TPS-based registration method
have been proposed [10]–[12]. Johnson and Chirstensen [10],
for instance, have proposed a consistent TPS image registra-
tion method that is landmark and intensity based, in which
consistency is maintained between forward and backward trans-
formation. Briefly, in the TPS method the image is modeled as
a metal plate in which landmark points are deformed in each
direction separately. Coefficients of radial basis functions that
interpolate the deformation are computed such that an elastic
energy functional is minimized.

In contrast to the mathematical thin-plate approach, the
Navier linear partial differential equation (PDE) is a physical
model of nonlinear elastic deformation. The Navier PDE
modeling of organ tissues as an elastic object, adopted from
continuum mechanics, considers the organs as elastic media
that are exposed to external forces and are smoothly deformed.
Bajcsy and Kovacic [13] and Broit [14] were the first to apply
Navier PDE to registration. In their method an equilibrium
state between external and internal forces was reached for an
isotropic homogeneous body. The external forces were deter-
mined in such a way that an image-based similarity metric was
maximized.

Another approach uses deformable objects, either parametric
or level-set-based methods, to track a large nonlinear defor-
mation [15]–[19]. For example, Davatzikos and Prince [17],
[18], used a deformable surface parametric representation of
the brain’s external surface to map one brain surface onto
another based on extracted surface (geometric) features. The
elastic mapping of one brain volume to another was found by
solving the differential equation that models an inhomogeneous
elastic body under external forces. The external forces were
determined so that the known cortical mapping was satisfied.

Nonlinear registration usually involves finding a minima of a
metric that is a function of many registration parameters. Reg-
istration failure might occur due to the difficulty in finding a
global minimum in the presence of many local minima. The
coarse-to-fine strategy in the optimization process can prevent
convergence into local minima traps. For example, Thevenazet
al. [20] proposed an image-based linear registration algorithm
in which an image pyramid was built using cubic B-spline in-
terpolator and a coarse-to-fine iterative strategy was applied to
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estimate the affine transformation that minimize an intensity dif-
ference between a reference and a test data set. Similarly, Shen
and Davatzikos [21] have proposed an elastic registration algo-
rithm that is driven by Geometric Moment Invariants (GMI);
the GMI features were selected hierarchically and successive
approximations of the energy function were minimized. Lester
[22] classified nonlinear hierarchical registration methods based
on a gradual increase in data complexity, warp complexity, and
model complexity.

An alternative representation of the elastic deformation
transformation is wavelet multiresolution decomposition. The
wavelet, being an inherently hierarchical approximation of
a transformation, is naturally suitable for such progressive
(coarse-to-fine) optimization starting from the low-resolution
approximation of the transformation (global deformation),
through the details in its different orientations, and ending with
the finest details of the transformation (local deformation).

Wavelets have been used by several researchers for the ap-
plication of image registration, either in order to represent the
nonlinear deformation between two images [23]–[25] or to rep-
resent the intensities of images’ voxels [26]. For example, Amit
[23] used a wavelet basis as well as a Fourier basis to repre-
sent the deformation. He used a gradient descent optimization
method to minimize the mean of squared distances between in-
tensities of overlapping voxels. Similarly, Downie [24] used a
simulated annealing optimization method to find the wavelet co-
efficients that minimize the sum of squared distances between
intensities of corresponding voxels. Both algorithms, [23] and
[24], are image-based and as such are most suited for applica-
tions dealing with intramodality datasets. In contrast, the regis-
tration algorithm developed in this study, is based on geometric
features: alignment is guided by samples from the objects’ sur-
faces and, therefore, can be used for applications dealing with
intermodality as well as intramodality scans.

In this paper, we are interested in the registration of rat
brain images from a cryoplane macroscope. Briefly, with
this instrument frozen tissue is cut with a microtome and the
revealed blockface surface imaged. The sequential images are
in-register by virtue of the accurate repositioning of the tissue
underneath the imaging system afforded by our system. Tissue
differentiation is achieved by systemic staining, in the present
case using black magic ink. As in all histological procedures,
intersubject variability includes intensity variations across
speciements. Additional deformation is also introduced by
the imaging process itself. Solely intensity-based alignment
procedure has not proven effective, and so we have adopted
geometric-based ones instead. Because as of yet only limited
success has been achieved with fully automated segmentation
of such geometric features and the high cost in labor associated
with manual delineations, we have been motivated to develop a
registration method that would rely on only a sparse sample of
points on the surface of brain regions.

In a previous study, we presented a 2-D wavelet-based reg-
istration method [27]. Here, we extend that method to three-
dimensions and compare its performance with that of a TPS
method [8]. We show how the scalability of the wavelet-based
method helps in reducing the complexity introduced by the high
resolution 3-D data. We also devised an adaptive distance map

to speed up the very time consuming surface distance computa-
tions that take place at each iteration of the optimization process.
The wavelet-based registration method presented here is guided
by sample points from rat brains’ external and internal surfaces.
A finite-supported, semi-orthogonal wavelet was used to ap-
proximate the nonlinear deformation field. The similarity metric
used was based on the squared sum of surface distances where a
surface distanceis defined here by the interval between a point
on a test surface and the closest point to it on the corresponding
reference surface. The Marquardt–Levenberg (M-L) optimiza-
tion algorithm is used to minimize a functional that is the sum of
two terms, namely the sum of squared distances and the elastic
energy.

Often a registration algorithm minimizes a cost function that
is a combination of a distance metric and smoothness constraint
(regularization) [10], [21], [28]–[31]. There are ample algo-
rithms that iteratively minimize the surface distance in order to
linearly align two shapes, sometimes these are referred to as
iterative closest point (ICP) algorithms. For example, see [32]
for a widely used geometric matching ICP algorithm. In this
paper, we are interested in recovering an elastic transformation,
therefore, in addition to minimizing the surface distance we
minimize the deformation elastic energy. The deformation field
between two corresponding objects is recovered progressively,
starting with the global part of the deformation and refining
with the local deformation components.

This method of surface-based registration that we applied was
specially designed for registration of large volume histological
data in neurobiology settings. In these setting, it is beneficial to
be able to match an experimental (test) brain onto an atlas using
only a sparse sample of points from the test brain structure sur-
faces. In our experiments we used a limited number of samples
(less than 1% of the number of voxels that define each struc-
ture’s surface) and applied the alignment algorithm to minimize
1) the distance between only these points and the corresponding
reference surfaces and 2) the elastic energy. We then evaluated
the performance with another larger dataset; we measured the
residual distance between this larger validation dataset and the
reference brain’s surfaces.

The rest of the paper is organized as follows. Section II
presents the wavelet representation of the elastic deformation.
Next, in Section III, the registration algorithm is described.
Sections II and III are an extension of the presentation in
Gefen [27] into a 3-D formulation. Alignment experiments,
demonstrating the algorithm’s performance, are presented in
Section IV. We conclude with a discussion in Section V.

II. ELASTIC DEFORMATION REPRESENTATION

A registration algorithm estimates the parameters of a mor-
phological transformation that brings into correspondence atest
objectand areference object. When expanding the elastic defor-
mation field with a wavelet decomposition, it is necessary
to estimate the wavelet parameter vector,, that yields
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where are coordinates in the test object space and
are the corresponding coordinates in the ref-

erence object space. The registration algorithm estimatesby
minimizing 1) the sum of Euclidian distances between points on
corresponding surfaces of the test’s and the reference’s struc-
tures and 2) the elastic energy of the deformation.

As mentioned earlier, we use wavelet expansion to approx-
imate the elastic deformation. The 3-D separable wavelet de-
composition of a deformation transformation, , everywhere
within a cubical support is presented in (1)

(1)

The basis functions are 3-D functions that are translated across
a cubical grid with intervals of and within a support of

. Each basis function is weighted by the
corresponding wavelet coefficient . The basis functions are
a tensor product of the one-dimensionalscaling and wavelet
functions as in (2)

(2)

The superscript index, “,” in (1) marks the subband (orienta-
tion) in the wavelet decomposition space.

Multiresolution analysis theory states that a transformation
that is approximated by its projection into space can be
equivalently represented by its projection into a lower resolution
level space and the difference spaces
(see Vetterli [33], Strang [34], Mallat [35], and Daubechies [36],
for example). The wavelet representation resolution is deter-
mined by the application and by the smoothness degree of the
transformation.

In general, the number of parameters is the same as the
number of grid points in the represented transformation cubical
support. For example, in our experiments a support of

was used. Therefore,
parameters are required to represent

the deformation in one direction. This is a large number of pa-
rameters to handle for most minimization algorithms. However,
since the transformation of interest — the elastic deformation —
is by its nature smooth, it can be estimated with only lower reso-
lution levels and still provide reasonable accuracy. For example,
the wavelet decomposition of a deformation field with a support

of , and when using the sixth resolution
level, contains 1024 parameters. In order to further reduce the
number of parameters that the optimization algorithm deals with
at a time, the wavelet coefficients can be split into groups that
are classified by the orientation and the level of resolution they
represent. Each such group of wavelet coefficients corresponds
to a different component of the deformation. In other words,
the deformation is a combination of components with different
levels of details (resolution levels) and orientations (subbands).
A progressive approach is applied in which the wavelet coeffi-
cients that correspond to a low resolution transformation com-
ponent are estimated first and the wavelet coefficients that cor-
respond to a high resolution transformation component are es-
timated last.

III. A LGORITHM DESCRIPTION

The registration of one elastic object to its homologue is
done by estimating the nonlinear deformation that brings
together a pair of corresponding surfaces. The deformation
is determined by the registration parameters—the wavelet
coefficients —that minimize the functional . We define
a functional as the weighted sum of 1) the sum of squared
surface distances, and 2) the elastic energy, , so that

. The parameter is a weight constant
that is empirically determined. Sections III-A and B present the
derivations of and as a function of the registration
parameters, respectively. Section III-C describes the progres-
sive approach to the M-L-based optimization procedure applied
in the proposed wavelet-based registration algorithm.

A. Sum of Squared Distances

The distance between two points, ,
is the Euclidean distance between an already mapped point on
the test surface and the closest point to it on the ref-
erence surface, . Similarly, a vector distance is
defined as . Note that . The
magnitude being minimized is the sum of the squared distances

(3)

Local dependency of on the registration parameters,,
is achieved by substituting the Taylor expansion of in the
vicinity of as follows:

(4)

where
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and

Note that in the M-L method only the two first elements of the
Taylor expansion of are included so that the computation of
the Hessian matrix is conveniently avoided [37].

Following the chain rule of differentiation,
. It was shown in [38] that

. In our case, it follows that

B. Elastic Energy

The second term, , that is being minimized is the elastic
energy

(5)

where and are the Lame’s coefficients that reflect the elastic
properties of the medium. In this paper, for simplicity, we chose:

and . Adding spatially varied setting of these coef-
ficients can provide refinement of the elastic model. But doing
so is beyond the scope of this paper. Substituting the transfor-
mation, , as represented in (1) results in a linear combination
of the integral

(6)

where . (An analytic evaluation of this integral is
presented in [27].) In order to simplify the expression for the
elastic energy, it is assumed that the scaling and wavelet func-
tions used satisfy a principle we calledthreefold orthogonality
[27]. The threefold orthogonality property states that the scaling
and wavelet functions are orthogonal to each other and orthog-
onal to each other’s first and second derivatives. The conse-
quence of satisfying this property of threefold orthogonality is
that minimizing the elastic energy of the deformation is equiva-
lent to minimizing separately the elastic energy of the different
deformation components. In this paper, we merely approximate
the threefold orthogonalityusing a semi-ortogonal wavelet –
spline of order 3 [27].

Let us continue and develop the expression in (5) con-
sidering only the transformation component

for . In this case, (5) is a
linear combination of the following terms:

(7)

Accordingly, the energy of the transformation portion that cor-
responds to level and orientation is

(8)

The matrix form of (8) is

(9)

where the equation shown at the bottom of the page holds.
We proceed with applying the Taylor expansion of in the
vicinity of to (9)

(10)

It can be shown that the matrix is linearly proportional to
the Wavelet-Galerkin discretization matrix of the homogenous
static Navier PDE [27]. This implies that minimizing the elastic
energy is equivalent to solving the Navier PDE.

The dimension of the matrix is
. Hence, in the higher

levels of resolution, due to the increased wavelet basis func-
tions’ locality, the matrix is large. Note though that the
matrix depends only on the chosen support,, and the
scaling and wavelet basis functions. does not depend on
the object of interest (more specifically the objects’ shape and
relative deformation). Therefore, can be computed once
offline and reused thereafter for the deformation estimation of
any input object data.

and
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C. Parameters Optimization

The expressions developed above for the sum of the squared
distances, , and for the elastic energy, , are combined
to result in the functional

(11)

Based on our experiments, the parameterwas set arbitrarily
to 1. The overall minimization algorithm had as an input a
subset of samples from surfaces of the test brain’s structures.
Accordingly, a range of wavelet resolution can be used for
the alignment. The estimated wavelet coefficients included
only those that corresponded to wavelet basis functions whose
support overlapped the surfaces of the test brain’s structures.
Starting with zero for coefficient values, an iterative procedure
was used to compute coefficients that minimized the functional
defined in (11). Iterations were within resolution levels and
orientation, using the M-L optimization algorithm [39]. Each
iteration involved computing the locations of the deformed
test brain, computing surface distances (the distance between a
point on the surface of the test brain’s structure and the closest
point to it on the surface of the corresponding reference brain’s
structure), and evaluating matrix and vector .

Using a coarse-to-fine approach, we first solved for the coef-
ficients , considering only the lowest resolution level where

and . Next, we proceeded to the second subband,
(still at the same resolution level, ), solving for

. In the same manner, we solved for the other six subbands,
through , at resolution level . We proceeded

down the pyramid to the next level of resolution ,
solving for the different subbands at this level, .
Hence, the computation of the wavelet coefficients was done
progressively until the estimation of all coefficients was com-
pleted. Note that since threefold orthogonality is not satisfied
(merely semi-orthogonal wavelet was used), the order in which
the subbands are chosen plays a role. Indeed different orders
will result in slightly different results. This can be dealt with
by iterating several times through the different subbands within
a specific resolution level. Our experiments showed that more
than one iteration yields only slight improvement in accuracy.

IV. EXPERIMENTS

In this section, the performance and computational advan-
tages of the wavelet-based method are demonstrated. Seven rat
brains were reconstructed from cryoplane macroscope images
to yield 40 m isotropic 3-D datasets. One of these was defined
as our reference atlas while the rest were used as test brains. The
data used to drive the alignment algorithm consisted of manu-
ally delineated surfaces of external and internal structures of the
brain (see Table I). The shape of these structures and their rela-
tive position in the brain are shown in Fig. 1.

Manual delineation of surfaces of a brain’s anatomical
structures is tedious and time consuming, and full delineation
is sometimes impossible due to a local lack of contrast caused
by a nonuniform distribution of the systemically applied stain.

TABLE I
THE CUBE DIMENSION THAT INSCRIBESEACH BRAIN STRUCTURE AND THE

VOXELS NUMBER THAT REPRESENTEACH BRAIN STRUCTURE’S SURFACE

Therefore, the alignment of experimental data (test brains) onto
an atlas (reference brain) when based only on a small subset of
sample points from the surfaces of a test brain’s structures can
be of great value. Table I shows the dimension of the cube that
inscribes each of the brain structures employed by this study
as well as the number of voxels needed to fully represent their
surface.

In the following experiments, we sampled surface points at
a distance of about 30 voxels from each other (less than 1%
of the samples that were needed to represent the surface of the
external and internal structures of the test brain). We used this
small subset to guide the registration. We validated the regis-
tration accuracy based on another larger subset of points. In a
simulated case where the true correspondences are known, the
true error can be computed as the average Euclidian distances
between known corresponding points. In a real case, however,
where the true correspondences are unknown, only thesurface
error can be computed. Surface error is defined here as the av-
erage Euclidian distance, where a distance is measured between
a point on the surface of a test brain’s structure and the closest
point to it on the corresponding reference brain’s structure.

A. Recovering Synthetic Deformation

The efficacy of the wavelet-based method to align one rat
brain volume to another rat brain volume was assessed first
using one brain volume. The evaluation involved three steps: 1)
applying a known deformation to the test brain to generate the
reference brain; 2) registering the test brain onto the reference
brain; and 3) comparing the results of the estimated deformation
with the known deformation.

Prior to registration, the test brain was positioned at the center
of a 1024 512 512 cube. Polynomial mapping

was applied to the test brain to create the reference brain. Fig. 2
shows the test brain with the absolute deformation between ref-
erence and test brains coded in gray scale on its surface. Table II
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Fig. 1. Volumes of interest employed to asses algorithm performance. Shown is a ventral view with the external surface rendered semi-opaque. Internal structures
are shown in darker opaque shade: (a) Third and forth ventricle, (b) middle cerebellar peduncle, (c) lateral ventricle, (d) trapezoid, (e) midline ofcerebrum, (f)
seventh nerve, (g) optic chiasm and tracks, (h) trigeminal nerve, (i) corpus callosum, (j) cerebellar tracks, (k) corpus callosum-midline intersection, (l) superior
colliculus, (m) anterior commissure, and (n) cerebral peduncle.

shows the mean and median of the applied deformation on the
surfaces of the external and internal structures. This deformation
was represented by a semi-orthogonal spline wavelet (of order
3) where and .

Two cases were examined: 1) when the optimization al-
gorithm used the known correspondences to compute the
distance between the test’s sample points and the reference
(known CPs); and 2) when the optimization algorithm used
surface distance to compute the distance between the test’s
sample points and the reference (unknown CPs). In either

case, performance was assessed computing the true error
based on the known CPs. The means and the medians of
the alignment errors for the different structures are shown
in Table II. In the known CPs case, the average error was
reduced from about 9 voxels to 0.3 voxels while in the un-
known CPs case the error was reduced from about 9 voxels
to 0.8 voxels. These results demonstrate that the better the
surface distance estimates the distance between true corre-
sponding points the better the registration accuracy. In other
words, the average error for the first case can be considered
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(a)

(b)

Fig. 2. The test brain with the applied polynomial deformation magnitude
coded on its surface, and shown at (a) horizontal rotation of�37.5 and (b) 37.5
and vertical elevation of 30. Values on the gray scaled bar shown on the right
are in voxels.

as a lower bound of the algorithm performance in the setting
of synthetic deformation.

B. Adaptive Distance Map

During registration, one of the operations that contributes sig-
nificantly to algorithm complexity, in terms of both storage and
time, is the computation of surface distances. A surface distance
value needs to be computed for each sample point on the sur-
face of the test brain’s structures; this computation takes place
on each iteration of the optimization algorithm, as described in
the previous section. As mentioned earlier, the surface distance
is the distance between a point on the surface of a test brain’s
structure and the closest point to it on the surface of the corre-
sponding reference brain’s structure. For example, if the surface
distance associated with a point on the external surface of the
test brain is needed, a search for the closest point to it among
711 716 reference points is necessary (see Table I).

TABLE II
WAVELET-BASED REGISTRATION ERROR(IN VOXELS)

One approach to speed-up the surface distance computation
is to use a discrete distance map. In this approach, surface dis-
tances between points on a cubical grid and a reference struc-
ture are precalculated and stored in a 3-D array—referred to as a
distance map [38]. Later, the registration algorithm accesses this
distance map to extract a desired surface distance. Although the
usage of a distance map does speed the surface distance com-
putation enormously, it has two drawbacks. First, only distance
values associated with grid points can be extracted from the dis-
tance map, meaning that the surface distance value at an arbi-
trary point is not available. (One way to deal with this is to es-
timate the required distance using a linear interpolation (LI) of
the eight neighboring grid points’ distance values.) Second, the
distance map requires a lot of memory since it needs to con-
tain the distance values of cubical grid points with support that
should at least inscribe the union of the test and reference brains.
A typical size of the distance map of the reference brain’s ex-
ternal surface is 592 432 448. Assuming that each distance
is stored in 3 bytes, the total memory required for this distance
map is about 328 Mbytes. Note that a separate distance map
should be precalculated for each of the fourteen internal struc-
tures of the reference brain as well.

The above approach, although leading to efficiency in com-
putation time, is inefficient in the following aspect. Since it is
not known a head of time at what locations distance values will
be required by the algorithm, the distances for grid points every-
where within the cubical support needs to be precalculated and
stored. This results in a large storage of unused distance values
since usually computation of distance is required for points at
the vicinity of the test brain’s surfaces as it progress toward the
corresponding reference brain’s surfaces.

In this paper, we reduced the memory size required to store
the distance map applying an on-demand construction of the dis-
tance map. Instead of populating all of the distance map prior
to registration, we initialized an “empty” distance map. During
registration when a distance value at a certain point was required
an inquiry was done to the distance map to check if this distance
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TABLE III
THE ADAPTIVE DISTANCE MAP MACRO-VOXEL MEMORY ALLOCATION AND

SURFACE DISTANCE COMPUTATION ACCURACY

value has already been computed and stored by a previous in-
quiry. If the distance value did not exist in the distance map, it
was computed and stored for future inquiries.

The memory allocation and access were done as follows. The
distance map volume was partitioned into macro-voxels of
voxels. A macro voxel was allocated only when a distance value
at a point located within its support was required. A distance
value at a certain point is accessed by a pointer to the corre-
sponding macro-voxel and another pointer to its location within
the macro-voxels. Each time a distance value was required, one
of the following scenarios took place.

1) If the macro-voxel associated with this point was allo-
cated and contained all the necessary data, then the in-
terpolated distance value was returned.

2) If the macro-voxel associated with this point was allo-
cated but some or all of the distance values at eight neigh-
boring grid points were not stored in the buffer, then the
missing distance values were computed and stored in the
macro-voxel buffer and the required distance value was
interpolated.

3) If the macro-voxel associated with this point was not al-
located, then a macro-voxel buffer was allocated, the dis-
tance values of eight neighboring grid points were com-
puted and stored in the macro-voxel buffer, and the re-
quired distance value was interpolated.

This adaptive on-demand construction of the distance map
resulted in a significant reduction in the memory size needed
to accommodate the distance map. Table III shows the max-
imum number of macro-voxels versus the number of actually
allocated ones for each of the brain structures’ distance maps.
It can be seen that the adaptive distance map required on av-
erage ten times less memory than a full precalculated distance
map. Table III also shows the estimation error that is the re-
sult of using LI for the surface distance computation. Exper-
iments with registration of synthetically deformed test brain
showed that the algorithm’s running time when using an exact
surface distance computation (no distance map is used) is120

TABLE IV
AVERAGE SURFACEERROR FORAFFINE AND WAVELET-BASED REGISTRATION

TABLE V
SURFACEERRORS(IN VOXELS) AS A FUNCTION OF THERESOLUTIONLEVELS

min and when using LI (adaptive distance map is used) is17
min. Hence, using an adaptive distance map the algorithm runs
about seven times faster (based on algorithm implementation
using MATLAB on a Pentium IV PC with 1.9 GHz and 2 GB
RAM). Interpolation error though is on average 0.18 pixels (see
Table III).

C. Rat Brains Mapping

To evaluate the algorithm in the intersubject setting, we reg-
istered the six rat test brains onto the reference brain. It should
be noted that in this case only the surface error was measured
since the true error is unknown. Prior to the wavelet-based reg-
istration the brains were linearly aligned using a surface-based
affine algorithm [40]. Table IV shows the average registration
errors of the six different test brains. The errors were computed
both after affine alignment and after wavelet-based alignment.
As can be seen from Table IV, the average error was reduced
from 5.1 to 2.4 voxels.

The progressive refinement of the deformation estimation is
demonstrated in Table V. Table V shows the registration error for
the rat brain surface alignment as a function of an increased res-
olution level. The maximum wavelet coefficients that are con-
tained in a support of 1024 512 512 are shown beside
the actual number of wavelet coefficients that were used. The
actual number of wavelet coefficients used corresponds to the
wavelet basis functions that overlap the test brain’s structures.
Only these coefficients were estimated. This procedure resulted
in a considerable reduction in complexity. Another reduction in
complexity was achieved by considering only lower resolution
level of the wavelet representation, where and .
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TABLE VI
SURFACE ERRORS(IN VOXELS) FOR THEWAVELET-BASED AND THE TPS

REGISTRATION METHODS

Finally, a comparison between the performance of
wavelet-based and the TPS [8] algorithms was done. As is
described in Gabrani [8] the TPS interpolates the elastic de-
formation between two objects using radial functions. Briefly,
the TPS method provides a closed form solution in the form of
a linear system that satisfies a known deformation at a given
number of corresponding points. In this method, the number of
registration parameters is directly proportional to the number
of corresponding points used. Hence, the dimension of the
linear system is threefold the number of corresponding points.
Consequently, solving this system becomes more difficult as
the number of parameters grows. Moreover, the linear system
is not sparse, so methods that take advantage of sparsity cannot
be used.

In our experiments with the TPS method, we estimated the re-
quired corresponding points using a surface distance. Table VI
shows the average errors for the TPS and the wavelet-based
methods when using different numbers of registration param-
eters. Unlike the wavelet-based method, the TPS cannot resolve
the registration parameters in a progressive manner and is, there-
fore, limited in the number of parameters it can handle. It can be
seen, in Table VI, that the wavelet-based method, because it can
deal with more estimation parameters, can potentially result in a
better alignment when higher resolution levels are used. On the
other hand, the TSP, being a closed-form method, takes much
shorter time to run.

V. CONCLUSION

The nonlinear morphological difference between two corre-
sponding organs complicates matching their features. Align-
ment of brain histological images further adds to this complexity
because of the need to process high resolution data. Hence, a
registration algorithm suitable to the application of histological
brain mapping should have computational flexibility and scala-
bility so that a highly nonlinear matching of large images will
be feasible.

In this paper, a registration algorithm was evaluated that
offers a trade-off between complexity and accuracy. This
algorithm recovers the deformation field between two brains
in a progressive manner: global deformation is restored first
following a refinement that is produced by estimating additive
deformation details. This hierarchical approach is enabled by
a wavelet multiresolution representation of the deformation
field. A M-L optimization algorithm is used to find the wavelet
coefficients that minimize the distance between corresponding
surfaces of brain structures. To maintain the smoothness of the
deformation also the elastic energy is minimized. Problem for-

mulation results in sparse matrices and decoupling of equations
that correspond to different orientations and resolution levels.

The alignment method proposed here is a surface-based mul-
tidimensional registration algorithm that is guided by a small
number of sample points from the surfaces of a test brain struc-
tures. The average error results, obtained from the registration
of six rat brains, show a more than twofold improvement over
affine alignment. The scalability of the wavelet-based algorithm
was demonstrated and was shown to be a possible attractive
alternative especially when compared with the TPS. The TPS
method, although it provides a closed form solution, is limited
in its numerical capability to handle a large number of regis-
tration parameters. In addition, to get accurate results the TPS
method requires as an input a large number of corresponding
points that do not always exist when dealing with anatomical
surfaces.

In our experiments, we found that the algorithm’s accuracy
depends on how well the surface distance estimate the true dis-
tance between corresponding points (see Table II). We believe
that using contrast information in the vicinity of the surfaces of
corresponding brains’ structures will lead to a more accurate es-
timate of the distance between corresponding points. In the fu-
ture we plan to explore a hybrid approach in which voxel-based
features, besides geometric features, will be used to guide the
registration.
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