Specific responses to reviewer comments are italicized.                
Reviewer #1(Remarks to the Author):

This paper documents a very large data set of genes that are differentially expressed in the brain. Transcript abundance has been measured on a panel of recombinant inbred mice, allowing the authors to map regulatory regions. The observation that a small number of QTLs regulate a large number of loci is intriguing (though not novel) and the attempt to tie genetic effects into larger networks is an important advance in systems biology. The results are potentially of great interest and the webqtl resource will be useful to the mouse genetics community.

*While the discovery of the cis and trans regulatory QTLs are not entirely new, their location in a tissue such as the naïve mouse CNS is.  Furthermore, a multiple QTL approach was not employed in previous studies.  By using multivariate data reduction via clique analysis and parallel display of mapping results using the new cluster tree and pair scan features in WebQTL we were able to show that our major trans QTL bands act in combination. 

The problem with the article is that it is difficult to sort out the substantive new findings from the less important and probably marginal results. This is partly because the writing is often unclear

*As a general point, we are very willing to work with the editors to make appropriate revisions, but will re-read for clarity and colloquialisms.  To address these specific questions:

 (for example what is meant by a "powerful regulatory locus" (page 6),

*We will avoid using this statistical term in this non-statistical manner. The locus has the strongest statistical association with expression levels of over 10% of all transcripts, and is also a regulatory locus of many other transcript levels.  Thus, a polymorphism in this region has major and diverse effects on CNS gene expression.  

 "Trans-QTLs were also selective " (page 8),

*We will clarify this statement. By this we mean that trans-QTLs identified as regulators of gene expression in one tissue do not always generalize to the other tissue in this set of papers. 

 "RIs are essentially an immortal experimental mapping panel" (page 9),

* This metaphoric use of language can be revised. Immortality was not intended to refer to the individual mouse lifespan, but the experimental panel-the particular set of recombination events can be maintained indefinitely. In contrast to conventional recombinant crosses, e.g. F2’s and back-crosses, in which the individuals are unique, and each mouse can only be used once, the RI’s can be assayed repeatedly, in perpetuity, as long as the line is maintained. 

 "Complex associative networks exploiting the correlation matrix of molecular, structural and behavioral traits with those of shared upstream loci can be rapidly assembled from the aggregated trait information" (page 10)). 

*This sentence indeed contains a subtle mis-wording that rendered it opaque “Complex associative networks exploiting the correlations of molecular, structural or behavioral traits and their shared upstream loci can be rapidly assembled from the aggregated trait information.  This can be simplified. “Associative networks can be rapidly assembled from the correlations of molecular, structural or behavioral traits and their shared upstream regulatory loci.” In seconds to minutes, the correlations of gene expression, genotypes, neuroanatomy and behavior can be assembled into putative network diagrams.  This is very exciting. Testing the veracity of edges and nodes using other biological information or validation methods is the next step.  Though we refer to these networks as associative, or correlative, the inclusion of genotypic markers adds causality to some of the relations.  This is a significant advance over extracting correlation diagrams out of non-genetic microarray experiments, and also over wet-lab biology in which putative nodes are added to the network only after much tedious experimental work. 

Some sections of the paper are tangential to the main argument and could probably be dropped (e.g. "Polygenic control of gene expression variation" (page9), see my comments below). 

*This section was included to illustrate the point that single QTL models are an over-simplification, and can be eliminated if necessary.  This single transcript was chosen for the analysis because the one-way scan revealed two QTLs. This particular result has been rigorously tested by genomewide permutation analysis. Marker distribution patterns across the four bi-allelic classes are relatively even. We acknowledge that the testing of interactions requires high power, but do want to convey the point that multiple QTL are likely to determine phenotype in most cases.
The second problem, which may in part account for the lack of focus in the paper, is the difficulty deciding which QTL are real.  I found it hard to understand how they calculate the significance of their results.  The second paragraph on page 5 is almost impenetrable and it looks, at first reading, as if all the mapping results might be explained as false positives. The authors state "their number (the number of significant QTL) is fewer than the number of false positives anticipated from mapping 12,422 random phenotypes" (page 5). 

*This is true, and our meaning exactly. The critical issue is that we are not mapping 12,422 independent phenotypes.  These are highly correlated phenotypes.  We also are not sure that we should map all 12422 phenotypes.  Some have low heritability (or repeatability) in our mapping study. These are not mapping studies that one is likely to perform. To guard against false positives, we chose a normalization method that is extremely conservative, and these low heritability traits typically have non-significant QTLs. When these phenotypes are excluded from consideration, the rate of positive results is greater than expected. 
 If they analyse 12,422 transcripts then 5% of that number might be significant by chance, or 621 false positives. On page 5 they state that there are 101 significant QTL, but this is just from the 608 moderate to highly heritable transcripts. From the legend to figure 3 we learn that the remaining 95% of the transcripts contain 354 significant (5% level) QTLs, giving a total of 455 significant results less than the expected number of false positives (621). 

*These observations rely on a large number of assumptions that the transcription data violate. A major one is that the tests are independent. FDR does not perform well under dependence. This is related to an assumption of a uniform null distribution. This is only true when heritable traits are considered. Traits with low heritability and low noise naturally have low statistical significance on mapping studies. Using the conservative RMA method we greatly lower our noise. With higher noise, false positive signal may be generated. Filtering by heritability guards against this source of Type I error.
However they are using a false discovery rate approach which means (as far as I understand their explanation on page 5) that 25% of the 101 significant results will be false positives. Presumably the same percentage of false positives will be found in the 354 other significant findings.  So I accept they have identified some QTLs, but how do they decide which ones are real? Which 75% of the QTLs are true positives? Without this information I can't see how they can proceed to analyse networks, find cliques, amplify biology knowledge and the other tasks they have set themselves.

*We can improve the clarity of this discussion. The same percentage of false positives is not found in the low-heritability traits. Heritability can be used to determine the degree to which we believe the mapping result.  A strong QTL for a non-heritable trait is likely to be one of the 5% expected by chance. Statistical thresholds can determine how many results are likely to be true and false. No statistical threshold controlling FDR is going to determine WHICH results are true and which are false. This is where replication, convergence and plausibility come in. We address some of these issues in a section on multiple testing in which we advocate that different error rates are appropriate for different applications. Novel hypotheses based on a single mapping result should be very rigorous. Confirmation of a known finding may not be subject to the same high thresholds.  Aggregate findings might also be considered with lower statistical rigor, e.g. 20 ribosomal proteins map to the same locus, with no QTLs are statistically significant after adjusting for 12,422 tests. To rely on stringent statistical sanctification at a publishing convention 5% error rate is going to prevent the discovery of many novel relationships that are interesting extensions of well-known biology. We invite you to take a tour of WebQTL to see the potential of this resource. This is an interactive hypothesis generating system, but many known biological results can be confirmed. The multiplicity of similar results for a family of genes, e.g. a group of ribosomal proteins, reveals that there is a tremendous amount of signal in the data. Highly correlated transcript variation can also be verified in another forebrain data set available on WebQTL. 

Also, it's not just the QTLs that are potentially false positives, but the transcript variation itself.

*In small sample size studies, noise can masquerade as signal. As Jacob Cohen reminds in the introduction to his book on power analysis, the law of large numbers does not apply to small numbers, too. We are aware of this. To guard against false positive transcript variation we used a very conservative normalization approach developed expressly for small sample replicated microarray studies, RMA. Had we been less careful, we’d have hundreds of positive results (exceeding expectation) of low quality using the commonly employed MAS5.0 method. We have attempted to illustrate that the RMA method dampens the noise, and thus lowers the number of significant QTLs that are observed. Heritability estimation is a second check, to estimate the quality of strain means. The beauty of this RI mapping panel is that given infinite resources, deep biological replication is possible, and these issues will become moot as array prices descend. 

 I say this because of the close correlation between heritability and QTL detection: 5% of the transcripts with moderate to high heritability generate 22% of the results (page 5).  I assume "heritability" is the genetic variance, estimated by variance partitioning (in the Methods), and that it reflects the correlation between measures taken on the same sample. 

*This is incorrect. The measures are taken on independent samples within strain. The “heritability” is the ratio of between strain variance to total (between + within) variance, a signal to noise ratio. This is the strain intraclass correlation, and is an acceptable method for heritability estimation, used by Lynch and Walsh, and major RI phenotypers in our field.  It is true that heritability, estimated in this manner, can be increased with increased precision from additional sample size.  We had considered calling this measure “% genetic variance” but thought that most readers would find the term obfuscatory.

Thus heritability is a measure of the replicability of results.  608 transcripts have a heritability of >33%, which is just less than 5% of the total.  In other words, 95% of the 12,422 show a low heritability, or, as I can see no other explanation, a low replicability. I note that they do not provide a measure of the significance of the heritability measures, but if there is poor replicability of the individual results, it calls into question the value of carrying out subsequent analyses.

*A single threshold value was chosen to make presentation of the results feasible in 2-dimensional graphics and text. We chose 33% heritability because it leads to the highest proportion of true positives, but many more QTLs can be found for traits with 20% heritability.  This reviewer is using thresholds to dichotomize a continuous range of results. This is an artificial dichotomy. 95% of traits do not have a “low” heritability, they simply have a heritability below 33%. We chose to present a strictly filtered table of individual results, but many more good results can be found.  The error rate depends on the heritability of the trait set. If this threshold were lowered, there would be more positive results, but a higher rate of false positives, with an incremental decline in the proportion of true-positives as successively lower heritabilities are considered. The topology of this relationship is probably beyond the interest of most readers

Minor comments:

1. I'm not clear how they can be so confident about the mapping resolution. They state they can localize "LOD score peaks above 6 to intervals as short as 2-4 Mb". This is deceptive: it gives the impression that QTLs of high LOD score are likely to be identified by positional cloning. The problem is that the length of unrecombined chromosome (the block length) in an RI does not have a simple distribution (see for example Visscher, P.M. Genet Res 74, 81-5 (1999)). They should either qualify this sentence or delete the section.

*We agree with and appreciate this comment. Recent work by Karl Broman and colleagues has shown negative interference in RI panels suggesting the existence of recombination hot spots. Work by Atchley and colleagues has shown telomeric and R-band bias in recombination events. Despite this heterogeneous distribution of resolution we believe that many but not all QTL can be mapped to intervals this small. The use of cis-QTLs provides a reasonable empirical approach to evaluating realized precision. A comprehensive set of all 17 cis-QTLs in a small region of chromosome 1with LOD scores above 5.5 match the locations of their transcripts with a median offset of 1 Mb with a mean of 4 Mb range of offset of 0.1 to 12.6 Mb. The low variance about the cis-diagonal in figure 3 is a graphical illustration of this effect genome-wide. We can clarify this text to highlight this result.

2 Polygenic control of gene expression variation. This section (page 9) in fact describes an analysis of epistasis between two loci, not polygenic control (the action of many genes on a phenotype).  Given that there are difficulties in detecting main effects (see my comments above), the section is premature and not directly related to the main argument of the paper. Also, as the authors could carry out such an analysis at every other main effect, how do they arrive at a significant interaction P-value of <0.01? Surely there is an issue of multiple testing here. The method for epistasis detection is not given. 

*This section can be removed, or simply retitled to reflect it’s content more accurately as epistasis.  We chose a single transcript for this analysis, and did not perform the analysis over the entire dataset. We intended it merely as an illustration of the potential of the approach, which in this case we believe was fruitful. We wanted to convey that we recognize that one-way QTL scans are the simplest look at the complexity of gene expression regulation.  Not all traits and epistatic pairs have sufficient sample size for pairwise interactions, and with small sample sizes the risk of over-fitting can be high. We selected a single trait, and critically evaluated the result. We also ran a few hundred permutations over a few days. 
3. Association of expression variation with behavior. The data presented are "suggestive QTLs"(page 10). While there may some interesting observations I don't see the value of presenting suggestive mapping data, particularly with the doubts over the significant QTLs. There must be thousands of suggestive QTLs. 

*Behavioral data from the archival literature was performed on smaller numbers of strains, using less dense marker maps. The integration is still possible and meaningful.  We have applications in process to deeply and broadly expand the literature on these strains. The correlations between these traits are still relatively high, and they map to the same location. Prior biological knowledge of this system increases the probability of the alternative hypothesis in this set of tests. This reviewer is holding all results to the standards of an omnibus preliminary analysis. As we discuss in our paragraph on hypothesis testing, this is not reasonable for confirmatory analysis or for extension of strong results. However, we agree, for a novel result, only the most significant should be considered. 
Figure 6 is incomprehensible.

*The purpose of the figure is to show that groups of correlated phenotypes can be identified, and that for these groups, loci can be detected that regulate expression of all the correlated traits. We acknowledge that these correlations are partial, and that, as demonstrated here, relatively highly correlated phenotypes may be modulated by different loci. We believe that figure 7 is a good illustration of joint regulation of correlated phenotypes, and that figure 6 can be removed if it is of overwhelming complexity. We chose to leave it in as a demonstration of the construction of associative networks, and to represent multiple groups of correlated phenotypes in a manner that we believed would resonate with biologists.

4. Associative networks of transcriptional control and cliques of highly correlated transcripts and behavioral phenotypes. A previous analysis of eQTLs (Schadt et al) also made the point that some QTLs appear to regulate the expression of many different transcripts, but neither paper can decide whether the effect is indeed pleiotropic or comes from multiple, physically linked QTLs. The authors cannot state "we find that these transcript expression phenotypes clusters are due to pleiotropic effects of a few gene loci" (page 16). They have either to do more work, or explain that pleiotropy is one explanation of their finding.  

*We will gladly acknowledge that pleiotropy is but one possibility.  When the group of transcripts is of a similar functional or structural category, is intercorrelated at r >.8, and is regulated by a small handful of loci, we are tempted to conclude that pleiotropy is the most parsimonious explanation. But it is entirely conceivable that multiple physically linked polymorphisms are simultaneously regulating these transcripts, and that we may discover on fine mapping or expression modulation experiments that these large groups of transcripts are under independent regulation.  

5. Cliques of highly correlated transcripts. This section suffers particularly from the generic problem discussed above of deciding which results can be trusted and included in the analyses. Clearly some correlations are correct, as demonstrated by finding spliceosome related proteins together. But how are we to know which of the more unexpected, and therefore potentially more interesting, correlations are real?

*At the risk of being redundant we believe this generic problem has multiple solutions depending on the analytic goals. In this case we did an omnibus clique extraction, and came up with an interesting clique that the reviewer finds plausible. With billions of correlations we did obtain a very low FDR for | r | > .50.  Confirmatory, extensory analyses can be performed with lower thresholds, for example. Novel discovery requires stringent thresholds. By definition clique correlations are all above .85.  The correlations may be attributable to linkage or technical effects in a subset of cases, but no statistical test will allow the detection of true vs. false results. Statistical error thresholds to not speak to validity, they speak to reliability.  In a replicate experiment these results are likely to occur again. To guard against the ascertainment of invalid results, we can only advocate extraordinary thresholds for novel findings. We argue that most of the findings we present have strong converging evidence or prior knowledge that speak to their increased plausibility. It should be noted that we did not cherry pick our examples, but rather, examined relationships that we believed readers would already have some prior experience with, over stronger statistical results.  This paper is not an uncritical presentation of the best results based on blind faith in statistics alone.  We include several statisticians in our group who have strived to present quality statistical results that are biologically meaningful after careful and critical evaluation of the data. They are deeply aware of the issues that this reviewer raises, and have tried to present them in an open and straightforward manner, while not detracting from the strength of the overall approach and the value of the data integration we have achieved.  As a group we have struggled to strike a balance between presenting a thorough statistical accounting of our results and a presentation of the relevance of this study to a more general biological audience. All of our data and results are public, including the underlying trait distributions, and much more information than any other study of it’s kind. 

6. Confirmation and amplification of existing biological knowledge/Query specific multiple testing. Both sections are technical comments on the data base and could be either omitted or reduced to one paragraph in the discussion

*Query specific multiple testing is a section we included specifically to address the issue this reviewer and we as authors grappled with.  Our point is that statistical thresholds are tools, designed to allow users to control error at thresholds commensurate with their experimental goals. The cost of errors, the correlation of multiple tests, and the redundancy of the family of hypotheses are all considerations.  The robustness of subsequent use of the results to statistical error is also a consideration. This paragraph is critical commentary on the use of thresholds, and is a required explanation of the multiplicity of thresholds employed and the occasionally low stringency (relative to publishing convention) of our statistical thresholds. 

7. Discussion. This is too long and repeats much of the material given in the results. 

*We will gladly revise to remove extraneous reiteration.

Reviewer #2(Remarks to the Author):

The authors have generated a fascinating set of data on the abundance of mRNA transcripts in the brains of mice from 32 BXD recombinant inbred strains, allowing the mapping of polymorphisms that contribute to variation in the abundance of these transcripts.  These phenotype and genotype data have been made publicly available on the web, along with numerous more traditional phenotypes for these strains.  The web site includes software for genetic mapping and correlation analyses.

These assembled data, and the possible analyses that may be performed on them, are extremely complex, and so the manuscript provides the reader with a small snapshot of each of a large variety of possible views of the data.  We are left learning little with precision, but nevertheless the results provided are of great interest, and could have great influence.  

My key concern, however, is that the authors have overstated the value of these data.  After adjustment for the genome-wide scan and the simultaneous mapping of 12k phenotypes, few QTLs can be declared with confidence.  I don't believe the authors' statement that QTLs can be mapped to 2-4 Mb with just 30 RI strains.  The ambitious task that the authors have undertaken likely requires data on numerous additional strains; we look forward to the doubling of the BXD RI set, in development by the authors and others.

*As stated previously, for cis-QTL from a single interval with high LOD scores, we have confirmed that 12 in 17 transcripts were mapped with this precision and the remaining 5 were mapped to less than 12.6 Mb. We can present genome wide quantitative results to this effect. This result can also be observed in Figure 3, the transcriptome map. The lack of scatter of points about the diagonal qualitatively demonstrates the precision with which QTL mapping can be performed from this strain panel. Naturally we can’t verify the trans QTL precision in the same manner until the relevant QTNs have been identified, however, we can infer that the same precision is effectively obtained for analogously high LOD results.
The key findings are the following.  Transcript abundance is highly heritable (but we are unable to measure the actual heritability with this design; see comment 1 below).  We can map QTL affecting transcript abundance (though few QTL can be declared with confidence after adjustment for both the genome-wide scan and the 12k phenotypes mapped).  QTL can be mapped to 2-4 Mb (though the illustration in Figure 2 suggests this is not true; see comment 2 below).  There are cis- and trans-QTL.  These QTL are tissue specific (though the evidence for this with these data does not appear strong; see comment 3 below).  There are several major trans-QTL, with one (on chr 6) possibly affecting 10% of all transcripts.  Transcript abundance can be influenced by multiple polymorphisms (though this was explored for only one transcript).  We may study the co-variation of multiple transcripts and multiple other phenotypes (though a key problem here is that one cannot, with these data determine the direction of the causation).

I have several further important concerns.

1. The design of the study is somewhat unfortunate.  There are no real replicates.  For most strains, three pools of three mice were used, but the three pools were at different ages, and some pools were of male mice while others were of female mice.  The true heritability (the proportion of the phenotypic variation that is genetic in origin) cannot be estimated, and we cannot separate environmental variation from variation due to age and/or sex.

*Age and sex are environmental variables in that the hormonal milleu they establish creates an environment in which gene expression occurs. By averaging across this variability, our results are generalizable except for the rather small proportion of transcripts that have sex and age differences. We can append our basic statistics pages on WebQTL with age, sex and sex by age interaction results for gene expression variation obtained via linear modeling in a fully crossed and balanced, or a fully crossed subset of the data. Again, for simplicity, we chose not to refer to our measure as “%Genetic Variance” or “strain intra-class correlation”.  We do believe that while the environmental variance and other organismic (sex/age) environment related variance are confounded, they are in the denominator of the heritability estimate (but see the point above regarding noise effects). In short, this variability constitutes conservative bias.. 

   The authors should include the precise details on the design in a supplemental table, rather than referring the reader to the webqtl site.  In particular, they should draw attention to the fact that for some strains there were 5 chips while for some strains there was just 1.  Did the authors account for this imbalance in the genetic mapping? 

*Strain means were used in mapping analysis. Thus, no strain was over-represented in the mapping and permutations. Though some strain means are more precisely estimated than others, we did not systematically weight the means by sample size or reciprocal variance. WebQTL users can examine trait data and drop individual values, recompute trait data, examine a variety of normalizations, and perform variance weighted mapping. 

2. The authors claim the ability to map a polymorphism influencing the expression of a transcript to within 2-4 Mb, but can we really exclude the centromeric region on chr 16 in Figure 2?  I don't think we can trust the bootstrap here, and the LRS curve suggests that the QTL have not been mapped with great precision.

*There are three intervals between the centromere and the peak LRS identified by bootstrap. In the interval mapping approach, adjacent intervals often correlate with strong effect QTL intervals, an inevitable consequence of linkage disequilibrium and high effect size. Still, we don’t take the LRS peak on faith, but use TWO convergent approaches, SNP density and bootstrap analysis.

3. The authors state, that the "master" trans-QTLs in the brain vs those in hematopoietic stem cells are "almost completely different" (pg 6, line 13), but on pg 8, they state considerable overlap in cis- and trans-QTLs, and I'm concerned that we have little ability with these data to state with confidence that a QTL acts on a transcript in one tissue and not in the other.  

*We concede that without a covariate model in which both samples are present in the same strains, we have less ability to claim specificity.  For the very strong QTL reported in the supplementary table, we have examined the same traits in HSC data. In many cases we found equally strong QTL mapping to different loci. 

4. The authors should discuss the clear horizontal bands in Figure 3. I assume these are due to variation in gene density.  If their presence is without meaning, then the confidence that we can ascribe to the vertical bands is greatly lessened.

*The horizontal bands roughly reflect gene density. However, they reflect that density as sampled by transcripts on the AffymetrixU74Av2 array, which contains approximately 1/3 the number of mouse genes. Vertical bands can occur anywhere on the genome. 

I have many minor concerns that the authors should address.

a. The authors cannot estimate heritability as it is traditionally defined (pg 4, l 12; Supp Table 1), and so they should stick with a different term.

*We suggest two alternatives (% Genetic Variance, Strain Intraclass Correlation), but a case can be made for using the term heritability. 

b. "Empirical P-value significance levels" (pg 5, l 9) should just be "empirical P-values".

*Okay. 

c. "robust in the face of extensive bootstrap analysis" (pg 6, l 8) What does this mean?  What was actually done, and what was observed? 

*There are three intervals between the centromere and the peak LRS identified by bootstrap. In the interval mapping approach, adjacent intervals often correlate with strong effect QTL intervals, an inevitable consequence of linkage disequilibrium and high effect size. Still, we don’t take the LRS peak on faith, but use TWO convergent approaches, SNP density and bootstrap analysis.
d. "The 32 genotypes in this particular case..." (pg 9, l 11), I thought there were 35 (including the parental strains and the F1).

*Parentals and F1 mice are excluded from the mapping analysis.  Under the debatable assumption that the parentals have extreme phenotypes in most cases, their inclusion biases permutation tests liberally. F1’s also do little to help the analysis in the event of dominant allelic effects, and were also excluded. The text will be modified to be more clear about when parentals and F1s are in the analysis and when they are excluded.

e. "The polymorphism regulating Drd2 plays a role..." (pg 10, l 10) How do we know this is the same polymorphism, and that this is pleiotropy rather than association due to linkage?  

 *We don’t. These are two alternative interpretations.  We can be more clear in our caveats to this conclusion and emphasize the interpretation of correlations as non-causal, and potentially spurious due to linkage.

f. The methods behind the associative networks (pg 10) and clique analysis (pg 11) should be described more clearly.

*We will gladly provide the methods for these analyses in greater detail. We were trying to maintain a reasonable adherence to page limits. 

g. "We have been developing novel approaches to combining these cliques..." (pg 11, l -2)  What are these approaches?  This doesn't belong in the results section.  

*We now have these clique results, and can present a taste of these paracliques.  We are very excited about this work, but can’t do it justice in a single manuscript. The new cliques are larger, and are regulated by combinations of the transbands. We are attempting to discover how they interact. These cliques contain genes related to synaptic transmission, signaling, mRNA transcription and other processes as described in our section on associative networks of transcriptional control.  

h. "Two well-known molecular interactions in this pathway..." (pg 12, l -4); we need a quantitative justification of the connection between the loci and the transcripts, and how can we know that the particular genes are responsible for the linkage signal?  

*We will gladly amplify this section with LRS and p-value information. We can’t know that these are the genes responsible for the linkage signal, but it is quite compelling that regulatory loci are located at the sites of known regulators. We can rephrase this more cautiously and provide more information regarding polymorphims in these candidate regulators between the progenitor strains. 

i. In Methods pg 18, l -15, the authors mention Supp Table 3 regarding SNPs in the probes, but the Supp Table 3 distributed with the manuscript concerns the "major trans-QTL bands".

*This information is actually in SuppTable 4. We will gladly rectify this error.

j. Explain "Winsorized" in the Methods (pg 19, l -16).

*Winsorization (after the English Monarchy) is the truncation of distribution by assigning outliers the value of the most extreme non-outlier observation. This approach was not used in the current data set, and we will omit this from the methods text. 

k. In Supp Table 1, how were the SEs of heritability calculated, and what is the adjusted heritability?

*S.E.  was calculated as the standard error of the intraclass correlation coefficient using an unattractive looking formula for unbalanced data by Swiger (1964).  The complete SAS/IML code used to generate the value can be provided.

s = nrow(n); 


*Number of strains where n is the vector of strain sample sizes 

ndot = sum(n); 


*Total sample size

ss= ssq(n); 


*Sum of Squares of strain sample size.

k1=(1/(s-1))


*ndot - (ss/ndot);

t = vstrain/(vstrain+verror); 
*strain intraclass correlation, 

variance estimates from PROC VARCOMP

a= k1*k1;


*a, b, c are intermediate computations

b= ((1+k1-1)*t)*((1+k1-1)*t);

c= (1-t)*(1-t);

se = sqrt (((2*ndot-1)*c*b)/(a*(ndot-s)*(s-1)));

*STANDARD ERROR OF HERITABILITY

Swiger LA, Harvey WR, Everson DO, and Gregory KE (1964) The variance of Intraclass correlation involving groups with one observation. Biometrics 20:818.

l. In Supp Table 2, for the trans-regulated transcripts, the authors should provide the chromosome assignments of both the transcript and the QTL.

*This will be added to the table. 

m. How were the "seven major trans-regulatory QTL bands" (pg 6, l -6) defined?  When the chr 6 locus is said to "modulate the abundance of approximately 1650 transcripts" (pg 6, l -3), how were those defined?  

*We defined these loci based on a count of individual transcript peak LRS (one peak per transcript) over the whole genome. When plotted (either in the transcriptome map, or in this frequency plot, a profile of the transcriptome map) there are approximately seven major peaks. They are clearly above the uniform transcript to location expectation, reflecting the presence of numerous correlated transcripts mapping to specific genetic loci.  What we find in our clique analysis, which we allude to in the synaptic transcript regulatory diagram is that these loci are not independent, and that different cliques are modulated by sets of these loci. The cliques themselves have functional cohesiveness (genes within the cliques share function), and it is no surprise to find them correlated. 

n. The authors should stick with either LOD scores or with LRS scores.  Using both can be confusing.

*We have largely used the term LRS, and will convert all LOD scores to LRS for the purpose of this paper. Many readers have a more intuitive grasp of the LOD scale, and we may retain reference to a few LRS-LOD relationships to anchor the scale for these readers. 

o. The scales of the X- and Y-axes in Figure 2 should be made clear.

*This can be done.  The X axis is LRS, and the Y axis is a Mb scale on chromosome 16. We will label these axes directly on the figure. 

p. In creating the trace of transcript frequency at the bottom of Figure 4, it would be better to use a moving average rather than binning.  Also, it would be better to do the moving average on the cM scale rather than the Mb scale, as it is cM that matters for the precision of mapping by linkage.  

*With uneven density of markers, a moving average without a kernal weighted smoother would dilute peaks over large stretches of genome. A sliding window may be more appropriate. There are many ways to construct this plot, which is essentially a marginal profile of the transcriptome map. We chose to bin over a very narrow 5 Mb window, simply to retain peak height for very closely positioned markers.  In most cases bins did not contain more than two markers. This approach was useful in that it allowed us to retain obvious features of our transcriptome map that would not be as readily visible had we plotted results at individual marker locations only.  Our approach retained a very simple interpretation (the y axis is a count), while not atomizing closely linked QTL peaks. Mapping to one of two linked markers can vary via the strain distribution of noise.

Reviewer #3(Remarks to the Author):

Here follows the review for the two papers, "Genetic dissection of gene expression reveals polygenic networks modulating brain structure and function", by Chesler et al.  and "Uncovering regulatory pathways affecting hematopoietic stem cell function using 'Genetical Genomics'".  These two papers leverage off of expression data from multiple tissues from a BXD RI set of mouse strains to inform more classic complex phenotypes. Both papers generate expression data in brain tissue and stem cells, respectively, and associate levels of expression with genotypic and complex trait variation. The overall extent of genetic control of gene expression is discussed through examination of cis- and trans-acting QTL.  The extent of correlation between complex traits (pharmacological, behavior, and HSC-associated traits) and gene expression traits is also described, and clusters of more tightly co-regulated genes are formed and annotated using standard techniques.  Finally candidate genes underlying QTL for the complex traits are suggested by combining the expression, phenotype and genotypic data. 

Both papers are well written and well describe the experimental approaches taken.  They also confirm the extent of genetic control of gene expression shown in other studies, and continue to demonstrate the relevance of generating gene expression data in the context of segregating populations to inform complex traits.  However, in neither case has novel clinical application or novel biological insights been shown very conclusively (interesting hypotheses proposed, but no attempt to validate), and no new variants in genes have been identified that account for the phenotypic variation.  Instead, patterns of correlated gene expression traits are shown to associate with phenotypes like behavior or HSC turnover, which are not unlike any other expression experiment associating patterns of expression with such phenotypes, and some of these groups are shown to be under the control of different QTL, not unlike what would be expected in a standard QTL study

  The more novel aspects of these papers deal with tissue-specific control of expression (more strongly highlighted in the Byrstrykh paper) and the construction of association networks and identification of QTL controlling sub-portions of these networks (Chesler paper).

*We believe that the major novelty here lies in our integration of disparate data types from molecule to behavior in a single extensible reference design. We have a proliferation of biological databases, but few natural keys other than sequence to bring this data together. Here, we use the reference mapping panel of RI strains to pull together SNP to behavior data sets.  We have no doubt identified many relationships, and had to compromise between validation of a single finding or development of approaches to the entire data set, including our continuing efforts at clique analysis. There are many known biological phenomena that have confirmatory evidence in WebQTL. As the genes become more well annotated and SNP databases more well saturated, limiting the scope of biological validation to a handful of SNP effects on a named gene will be much simpler.  Here we have many interesting results, for example, we can already determine which of a large number of unidentified ESTs are associated with behavioral variation. This will allow us to hone in on the most important transcripts to follow up on first. Other  researchers may simply be interested in genetic correlation, nucleating novel genes with well known groups via corregulation and functional systems biological relations, rather than prediction of trait relevant polymorphisms. 
In short, it is not clear how much the level of novelty of the methods presented (in the absence of any biological validation or clinical application)will be of general interest to the readers of Nature Genetics. The degree of genetic control of gene expression traits, "hot spot" regions in the genome controlling for the expression of many genes, the utility of the expression data in a segregating population context, have all been described before.  The novel aspects described above and overall validation of the "genetical genomics" approach clearly warrant publication somewhere as they support other research published in a field that is only in its infancy and further suggest paths one could take to elucidate complex traits. 

Specific comments (pertain to both papers unless stated otherwise):

1.
The Chesler paper should indicate whether the data presented in the present manuscript have been previously published on in their Neuroinformatics and Nature Neuroscience papers, which have previously described WebQTL and made use of brain expression and behavior phenotypic data in BXD RI lines to analyze associated expression/genetic networks. Are these the same data?

*The analyses and data sets presented here are entirely new RMA normalized data that have not been published in detail elsewhere. This is the first publication focusing on genomewide aspects of our methods, however, without the elementary material on QTL scans and genetic correlations for individual traits, these global synthesis will be very difficult to understand. 

*The Neuroinformatics paper describing data integration through RI strain panels does go into some depth on the interpretations and challenges to genetic correlation analysis in these data sets. The Nature Neuroscience paper is a one- page summary highlighting the existence of our internet resource. Both of these emphasize the tools, not the results.  They do not focus on the global properties of the CNS transcriptome map, or the interactions of the trans QTLs (not mentioned in any previous study). This paper goes well beyond the gene at a time/locus at a time approach.

2.
Interestingly, in neither study are the genders of the animals considered.  Were all tissues profiled derived from animals of the same gender?  If not, are we to believe there is no substantial variation in the expression traits associated with the phenotypes presented that can be attributed to gender-specific effects?  No gender variation with respect to genetic control?  There have been recent papers that suggest this is not the case (see for instance Dev Cell, June 2004, 6:791-800).  At the very least, some discussion on the genders should be given and whether gender was treated as a covariate in the analysis.

*Sex (the preferred term for mice) was not used as a cofactor. We did analyze a balanced subset and fully crossed (strain x sex) subset for sex differences in a powerful study, and did not detect many. However, for those transcripts that have sexually dimorphic expression, notably including Ddxy, and Xist, we recognize that our imbalanced design leads to false positive QTLs. As we have addressed before, we will post information on sex differences in gene expression. New data on WebQTL have been collected in a sex-balanced fashion and covariates will be included in the near future. 

3.
If the papers are really to be accepted as a package, then some of the redundancy should be removed, such as the novelty of the cis-/trans-acting expression variation (which has already been highlighted by others, although maybe not to the extent described here).  For example, Figure 1 in the Bystrykh paper and Figure 3 in the Chesler paper really speak to the same kind of thing, so that perhaps less attention should be given to the overall control patterns and more attention to what the patterns are associated with, what genes potentially underlie them, and ultimately direct validation (in addition to differences among the tissues).

*If accepted, we will gladly work as a team with the editors to reduce the redundancy in these manuscripts. 

4.
The authors do a good job addressing the multiple testing issues related to this large-scale analysis, but don't really discuss the power to make detections in this setting (given the number of animals looked at), and how any lack of power to make detections may skew the picture painted, i.e., in a better powered study what sorts of results could change?  The number of trans-acting events could dramatically increase, the level of interaction could increase, etc.,  and the QTL hotspot regions could change in distribution, i.e., if the power to detect QTL clusters in this setting is only 10%, then the uniqueness of the hotspot regions would be less convincing and less clear what the interpretation should be.  For instance, what if the really relevant hotspot regions gave rise to harder-to-detect transcriptional changes, so that they do not show up in the kind of data presented (especially given the small numbers).

*With sufficient sample size, all biological differences could be detected and in the limit, the entire genetic network could be dissected. Precision will be increased, and noise removed. That does not change the fact that the most compelling effects are detectable at low power, albeit with increased error rate. This is a general comment that can be made about any study. We believe that while refinement will occur, the big picture will remain the same. And we believe that the big picture is novel. Large cliques of correlated transcripts that share common transcription regulation by a small handful of loci are associate with behavioral phenotypes and can be traced to individual polymorphisms.  The results that come out of this data set will only become sharper in time as the database is populated.  

5.
One of the potential problems addressed is that of probes overlapping SNPs and giving rise to cis QTL.  The authors indicate the Celera database was used to assess the extent to which Affymetrix probes overlapped probes that were polymorphic between the B6 and DBA strains of mice.  However, for the DBA strain it is not clear what percentage of nucleotides in the Celera mouse genome are covered by DBA sequence. It could be that only 60% of the Celera genome is covered by DBA sequence, leaving 40% uninformative regarding polymorphic DBA SNPs.  For the probes that were mapped, it should be indicated what percentage were actually fully supported by DBA sequence, and perhaps an estimate on what would be expected should be given.  

*We understand and acknowledge that the SNP data set is not exhaustive and that the quality of coverage varies over the genome. We can tabulate more precisely the rate of coverage in our probe level SNP analysis, which will allow estimation of the number of SNPs that may be discovered with additional sequence data. We have put tools on WebQTL for the manual identification of probe level SNPs, including the actual probe sequences and links to current genome browser BLAT analysis. This has been transparently automated for users. Expression data is also given for each probe. This allows users to easily determine consistency of probes within a probe set.  Even with the DBA/2J sequence coverage, variation in probes can still be an issue. Other probe level polymorphisms, e.g. polymorphic splice sites at the probe location, have affected the results of studies by Schadt (e.g.St7). We have made all of this information accessible, and users can exclude these probes to map phenotypes.

6.
A lot of attention is given in both papers to identification of candidate genes with QTL that co-localize with the phenotype QTL.  However, the extent of expression profiling is not well discussed, especially as this relates to the number of genes profiled, number of genes predicted in the mouse genome (so by failing to profile all genes, how can any reasonable argument be made that any given gene may be the gene underlying the QTL), and the extent to which DNA variations that lead to changes in protein function don't affect transcription (so perhaps you miss it all together). 

*We have used multiple approaches to candidate gene identification, and have illustrated how one would go about this using sequence data, expression data and transcription QTL data. Clearly, the absence of data on the array, or the absence of sequence data is not an absence of potential QTL effect. The methods are not exhaustive until the data resource becomes so. Currently these methods can rule in or increase weight on candidate gene hypotheses. What we hoped to illustrate is how several converging methods can be used to advance a set of candidates that possess a set of attributes.

7.
The type of discussion in the second paragraph on page 12 of the Chesler paper provides for potential new insights, but again is just hypothesis generating and not enough details are given to assess the meaningfulness of the associations. For example, while a couple of known cases are presented as being confirmed by the QTL analysis, we are not told how many known cases were considered before these were identified (i.e., were 100 known examples considered and 2 were found, so that the false negative rate is 98%?)  For the significance level of the other genes with QTL linking to the known clock loci, how many are expected to be false positives and how can one discern what is truth from false positive?  

*This argument again requires that we examine all data sets agnostically. Omnibus tests were developed for the detection of differences where no prior hypothesis exists. We have presented some of these whole data set results, but it is also reasonable to take a confirmatory approach to a large biological database. Here, we invited our colleague, Dr. John Hogenesch, an expert in the molecular biology of the circadian clock, to use WebQTL for examination of the genes he was most interested in. This is how many users will be approaching our data set. This is analogous to a “planned comparison” approach as discussed in Hayes, 1994 p. 424-425, in which prior knowledge is integrated by the researcher to reduce the set of hypotheses under consideration, thereby increasing the statistical power allocated to each one.  The other hurdle presented by the requirement of omnibus confirmation of known results is the difficulty in identifying the large set of knowns. We have done such analyses using text-mining approaches, including Chilibot’s natural language processing method. These in progress analyses will be the subject of other manuscripts.

