
and humidity. Eight factors were
amenable to analysis (Table 1).

Despite profound differences in the
mean responses of tested strains, the
broad-sense heritability estimate (intra-
class correlation estimated from variance
components from inbred strains only)
was 24%, so genotype alone did not
account for most of the variance.
Hypothesis-driven assessment of effects
for individual factors using typical infer-
ential statistics would be biased by the
presence of the other factors, which also
prohibits simultaneous ranking of their
relative impact by common analytic
methods. Thus, we used a technique
suitable for unbalanced data sets of high
dimensionality: classification and 
regression tree (CART) analysis6, an
automated machine-learning technique.
CART is often used in medical applica-
tions to develop decision trees for diag-
nostic classification. Its value as a
non-parametric tool for association of a
large pool of predictors with a continu-
ous variable has been largely untapped
in neuroscience.

In brief, the CART technique devel-
ops rules to partition data based on pre-
dicting factors, producing a decision tree
that can be used to predict the value of
tail-withdrawal latency from the modeled
factors. CART exhaustively tests all pos-
sible splits by each predictor to identify
the split that gives the most improve-
ment, defined as the difference between
variance in the parent node and mean
variance in the resulting two child nodes.
The search is performed on each succes-
sive node until the data are split com-
pletely. The resulting tree is then
pruned using a cross-validation tech-

Fig. 1. Frequency histogram of responses
on the 49°C tail-withdrawal assay of 8,034
mice tested from 1993 to 2001. Mice were
individually removed from their home cage
and introduced to a cloth/cardboard
‘pocket’, which they freely entered. Thus
lightly restrained, the distal half of its tail was
immersed in water thermostatically con-
trolled at 49 ± 0.2°C. Latency to a vigorous,
reflexive tail withdrawal was measured to
the nearest 0.1 s with a handheld stopwatch.
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TO THE EDITOR—Advances in genomics
have led to much excitement about the
potential to identify genes influencing
behavioral traits. Given that the propor-
tion of variation due to genotype (heri-
tability) of most behavioral traits is less
than 50% (ref. 1), an exclusive focus on
genetic determinants will not fully
explain individual differences. Mouse
genotype interacts with the laboratory
environment2,3, and systematic variation
and/or standardization of laboratory
conditions has been advocated4. Gener-
alization of results requires the assump-
tion that they are not particular to a
restricted set of standard laboratory con-
ditions, but poor regulation of important
variables can prevent replication. The
major challenge therefore lies in deter-
mining which factors need to be 
regulated. Many sources of laboratory-
related variability remain unidentified,
and the relative impact of known factors
is unclear.

We used a computational approach
to retrospectively identify and rank
sources of variability in pain responses
on a common assay of thermal nocicep-
tion, the 49°C hot water tail-flick/with-
drawal test. Data were collected in the
normal course of our ongoing study of
the genetic mediation of pain and anal-
gesia5 (Fig. 1). The results are consistent
with modeling in a subset of the data,
and we were able to confirm the results
in independent experiments that will be
published elsewhere, which also parti-
tioned the variance among genetic, envi-
ronmental and genetic × environmental
interactions.

Mice of varied genotypes were tested
using a consistent procedure through nat-
ural fluctuations in the laboratory envi-
ronment. The archival data set analyzed
consists of baseline tail-withdrawal laten-
cies for 8,034 naive adult mice, along with
the following information (where avail-
able) recorded at testing: genotype (strain,
substrain and vendor, among 40 inbred,
outbred, hybrid and mutant strains), sex,
age, weight, testing facility, cage density,
season, time of day, experimenter, with-
in-cage order of testing, and animal
colony conditions including temperature

nique to select an optimal tree. Split rules
are printed in each parent node and indi-
cate which levels of each factor go to the
left and right child nodes.

The optimal tree selected by CART
(Fig. 2) accounted for 42% of overall
variance in tail-withdrawal latency
(based on cross-validation) and had a
resubstitution relative error of 49%,
analogous to a multiple r2 of 51%. These
model-fit statistics may represent under-
estimates, because we took measures to
reduce the bias toward selection of high-
level categorical predictors and contin-
uous predictors in the generation of
tree-growing rules, including the con-
version of continuous predictors to cat-
egorical ones and the penalization of
factors by the number of levels they 
contain. This was done because we were
not interested in the predictive value of
the tree per se, but in the relative influ-
ence of the factors given equalized
chances of consideration. 

In agreement with previous findings7,
in every split by sex, female mice were
more sensitive than males to thermal
nociception. This finding confirms that
the sex difference, although limited in
magnitude, is robust across multiple test-
ing contexts. In virtually every split by
order of testing, the first mouse tested had
a higher latency than all other mice. In
addition, late-day testing, spring testing
and higher humidity were usually associ-
ated with increased nociceptive sensitivi-
ty (lower latencies).

This technique also allows us to rank
factors that are most important in
reducing variance in many contexts. The

Influences of laboratory environment
on behavior
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ses generated by the CART analysis. (A
detailed account of this analysis will be
published elsewhere.) Furthermore, this
experiment allowed us to partition 87%
of the variability in this trait into geno-
type (27%), environmental (45%) and
genotype × environment interaction
(15%) sources.

Large projects are often carried out by
multiple undergraduate and graduate stu-
dents, postdocs, technicians and other
transient personnel. Furthermore,
research, particularly on mutant mice,
increasingly involves collaborations. The
impact of these ‘nuisance’ factors
becomes greater as data are shared in the
growing body of online resources, such
as those generated by large-scale pheno-
typing efforts, including mutagenesis
screens and the Mouse Phenome Project9.
Cautious interpretation of such data is
warranted in light of varying within- and
between-lab environments, to avoid phe-
nocopies (environmental effects misat-
tributed as genetic effects) or spurious
genetic correlations.

By analyzing our data archives, we
identified the most salient laboratory
environmental factors associated with
trait variance, some of which had been
noted previously. These effects need to
be further explored with mechanistic
studies in mice and humans. We expect
that stress level may be a common medi-
ator, as environmental stressors can
modulate pain sensitivity in either direc-
tion10. Systematic investigation of gene
× environment interactions may yield
clinically important information leading
to the individualization of pharmaco-
logical and behavioral treatment strate-
gies for pain. More generally, we believe
that data-mining techniques can be
applied to many existing data sets to
identify consequential laboratory envi-

rankings are based on the relative vari-
ance reduction attributed to each factor
when used as a primary splitter or as one
of the top five surrogates (factors high-
ly correlated with the splitter, whose
importance it may mask) at each node,
relative to an arbitrary score of 100 for
the highest-ranked factor (Table 1).
Experimenter identity had the greatest
association with tail-withdrawal latency,
outweighing genotype, the second-
ranked factor. Also varying with behav-
ior were environmental factors not
commonly appreciated as affecting pain
sensitivity, including season, cage den-
sity, time of day (within a 12 h diurnal
period), humidity and testing order.

The importance of laboratory envi-
roment factors was demonstrated in a
report  of site-specific responses in
behavioral testing2. Precisely what dif-
ferentiated experimenters in the pre-
sent study remains uncertain. The size
and non-additive nature of the effect
(by parametric analyses, data not
shown) on baseline latencies eliminates
the simple explanation of reaction-time
differences. Experimenter age, sex and
experience level did not correlate with
the observed differences. All experi-
menters were trained by the principal
investigator (J.S.M.) or by a graduate
student (S.G.W.) trained directly by
him. Differential animal handling, per-
haps inducing stress differences, is like-
ly to be responsible. Indeed, different
types of restraint greatly affect sensi-
tivity on this assay8.

The large effect of experimenter does
not seem to be an artifact of CART analy-
sis, or specific to this data archive. We
confirmed that experimenter effects
account for more trait variability than
genotype in a prospective experiment
designed to test this and other hypothe-

Fig. 2. Regression tree topology for sensitivity on the 49°C tail-withdrawal assay. The optimal tree
shown here was selected after 10-fold cross validation. Each parent node is colored to indicate the
primary splitter for that node. Variable importance rankings (Table 1) are calculated based on the
variance reduction attributed to each factor used as a split criterion at each node and its surro-
gates. Black, terminal nodes. For full-size CART tree, with split rules and variance values, see
Supplementary Figure online.
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ronmental influences that are robust to
experimental validation.

Note: Supplementary information is available on the

Nature Neuroscience website.
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Table 1. Factor importance rankings
computed by CART.

Factora Number of Scoreb

factor levels
Experimenter 11 100.0
Genotype 40 78.0
Season 4 35.8
Cage density 7 20.4
Time of day 3c 17.4
Sex 2 14.6
Humidity 4d 12.0
Order of testing 7 8.7

aSome factors (subject age, weight and ambient
temperature) were not considered because
insufficient biologically relevant within-factor
variability existed in the data set. Preliminary
models indicated that testing facility may
influence the trait as well, but it was excluded
from the final model because only one
experimenter collected data in multiple facilities.
bScores are relative to the highest-ranked factor.
cTime of day levels: early (09:30–10:55 h), mid-
day (11:00–13:55 h), late (14:00–17:00 h).
dHumidity levels: high (≥60%), medium-high (40-
59%), medium-low (20-39%), low (<20%).

 Experimenter
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