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Abstract - An algorithm for nonlinear registration of an elastic body is developed. Surfaces 

(outlines) of known anatomic structures are used to align all other (internal) points. The 

deformation field is represented with a multi-resolution wavelet expansion and is modeled by the 

partial differential equations of linear elasticity. A hierarchical approach that reduces algorithm 

complexity is adopted. The performance of the algorithm is evaluated by alignment of sections of 

mouse brains located in the olfactory bulbs. The wavelet alignment algorithm produced a 2.0 to 5 - 

fold improvement in accuracy over an affine (linear) alignment algorithm.  
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I.   INTRODUCTION 

 Image registration is a widely required task in multi-dimensional data visualization and analysis. 

In medicine image alignment is used to fuse complementary information (across subjects and modalities 

as well as within), and to construct a probabilistic map. Image registration as a general solution in 

computer vision and in biomedicine in particular has been widely explored [1-3]. Four main 

characteristics distinguish one registration algorithm from another: (1) the features that drive the 

registrations – these can be image-based or geometric; (2) the transformation model, whether it is a linear 

or nonlinear; (3) the similarity measures based on which the alignment accuracy is determined; and (4) 

the optimization method with which the transformation parameters are estimated. Survey papers dealing 

with the classification of registration methods can be found in the literature (see [4-7]). 

 A common biomedical problem where image registration has been employed is in mapping newly 

acquired experimental datasets (called the test brains) onto a canonical atlas (called the reference brain). 

By doing so, one can segment these sets using standard neuro-anatomical templates. Registration of 

biomedical images, for this purpose and in general whenever inter-subject alignment is contemplated, is 

complicated by the inevitable presence of geometric variability. This necessitates use of nonlinear 

transformation if significant accuracy is desired. In addition, corresponding features used to guide 

registration are difficult to identify.  

 A number of approaches have been adopted to compensate for nonlinear differences between 

objects to be aligned including modeling one object as an elastic deformed version of the other. Among 

these are many that relied on Duchon [8] and Meinguet [9] introduction of the thin-plate splines as a 

mathematical interpolator. Goshtasby [10] and Bookstein [11] applied this interpolator to 2D image 

registration. Gabrani and Tretiak [12, 13] extended Bookstein’s method to 3D image registration. In the 

thin-plate splines method the image is modeled as a metal plate in which landmark points are deformed in 

the x and y directions separately. Coefficients of radial basis functions that interpolate the deformation are 

computed such that an elastic energy functional is minimized.   
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 In contrast to the mathematical thin-plate method, the Navier linear partial differential equation 

(PDE) is a physical model of nonlinear elastic deformation. The Navier PDE modeling of organ tissues as 

an elastic object, adopted from continuum mechanics, considers the organs as an elastic mediums that are 

exposed to external forces and are smoothly deformed. Bajcsy and Broit [14, 15] were the first to apply 

Navier PDE to registration. In their method an equilibrium state between external and internal forces was 

reached for an isotropic homogeneous body. The external forces were determined in such a way that an 

image-based similarity metric is maximized. Similarly, Davatzikos [16] used a deformable surface 

parametric representation of the brain’s external surface to map one brain surface onto another based on 

extracted surface (geometric) features. The elastic mapping of one brain volume to another was found by 

solving the differential equation that models an inhomogeneous elastic body under external forces. The 

external forces were determined so that the known cortical mapping was satisfied.  

 In the nonlinear registration case, where many registration parameters are involved, mis-

registration might occur due to the difficulty in finding a global minimum in the presence of many local 

minima. The coarse-to-fine strategy in the optimization process can prevent convergence into local 

minima traps. Lester [7] classified nonlinear hierarchical registration methods based on a gradual increase 

in data complexity, warp complexity, and model complexity. An alternative representation of the elastic 

deformation signal is wavelet multi-resolution representation. The wavelet, being an inherently 

hierarchical representation of a signal, is naturally suitable for such progressive (coarse-to-fine) 

optimization starting from the low-resolution approximation of the signal (global deformation), through 

the details in its different orientations, and ending with the finest details of the signal (local deformation).  

 In this study we have used wavelets to represent the deformation which was modeled as a 

combination of components that range between global deformations (best represented by the lower 

resolution levels of the wavelet decomposition) and local deformations (best represented by the higher 

resolution levels of the wavelet decomposition). The wavelet coefficients that correspond to each different 

signal component were estimated separately and progressively, starting from global deformation down to 

local deformation. This progressive approach for recovering the deformation signal is effective for 
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reducing algorithm complexity. The elastic deformation of each signal component was estimated by 

minimizing the elastic energy (which is equivalent to solving for the static homogenous Navier PDE) as 

well as by minimizing the sum of squared distances between corresponding surfaces (which is equivalent 

to imposing boundary conditions). 

 The wavelet-based registration method presented here is characterized as follows: (1) the 

algorithm is driven by geometrical features with the brain’s external and internal surfaces used to guide 

the registration algorithm; (2) the transformation model is a nonlinear deformation field where the region 

within the brain’s volume is modeled by a wavelet multi-resolution representation; (3) the similarity 

metric used is based on the squared sum of distances where a distance is the interval between a point on 

the test surface and the closest point to it on the reference surface; and (4) the Marquardt-Levenberg (M-

L) optimization algorithm is used to minimize a functional that is the sum of two terms, namely the sum 

of squared distances and the elastic energy. While the alignment algorithm formulated here is a two-

dimensional version, its generalization into a three-dimension one is straightforward. The performance of 

the algorithm was demonstrated for the 2D case of mouse brain mapping, focusing on the olfactory bulbs, 

a brain area where sensory information from the nose is processed.  

 Wavelets have been used by several researchers for the application of image registration, either in 

order to represent the non-linear deformation between two images [17, 18] or to represent the intensities 

of images’ pixels [19]. Amit [17] used wavelet basis as well as Fourier basis to represent the deformation. 

Amit used a gradient descent optimization method to minimize the mean of squared distances between 

intensities of corresponding pixels. Similarly, Downie [18] used a simulated annealing optimization 

method to find the wavelet coefficients that minimize the sum of squared distances between intensities of 

corresponding pixels. Both algorithms, [17] and [18], are image-based and as such most suited for 

applications dealing with intra-modality scans. In contrast, the registration algorithm, developed in this 

study, is based on geometric features; alignment is guided by objects’ contours and surfaces and therefore 

can be used for applications dealing with inter- as well as intra- modality scans.   
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 The rest of the paper is organized as follows. Section II presents applicable aspects of wavelet 

multi-resolution analysis. Next, in Section III, the registration algorithm is described. Algorithm 

evaluation with synthetic data is presented in Section IV. Section V evaluates the application of 

registration for the anatomical localization of internal structures within the olfactory bulbs of mouse 

brains. Section VI concludes with a discussion and suggestions for future research. 

 

II.   WAVELET REPRESENTATION OF THE ELASTIC DEFORMATION 

 In a registration algorithm the objective is to find the registration parameters that result in the best 

geometric correspondence between the test object and the reference object. Let us define an elastic 

deformation field u(x), represented by wavelet decomposition. In a registration procedure, we look for the 

wavelet parameters’ vector, c, that yields:  
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where ),( yx  are coordinates in the test object space and ),( yx ′′ are corresponding coordinates in the 

reference object space. The registration algorithm find c by minimizing the sum of Euclidian distances 

between the test object’s points and the reference object’s points as well as the elastic energy of the 

deformation. Details are provided in Section III.  

 As mentioned above, the elastic deformation is represented by a wavelet multi-resolution 

approximation. The theory of Multi-Resolution Analysis (MRA) can be found in many sources (see  [20], 

[21], [22] , and [23] for example). The two-dimensional separable wavelet decomposition of a deformation 

signal, u(x), everywhere within a rectangular support N=(Nx,Ny) is presented in (1). 
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The basis functions are two-dimensional functions that are translated across a rectangular grid, with 

intervals of 2j and within a support of N= (Nx,Ny). Each basis function is weighted by the corresponding 



 

 

6 

6

wavelet coefficient is
jc k . The basis functions are a tensor product of the one-dimensional scaling and 

wavelet functions as in (2) and as shown in Fig. 1 for the orthogonal Coiflets wavelet [23]. 
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The superscript index, “s”, in (1) marks the sub-band (quadrant/orientation) in the wavelet decomposition 

space.  

MRA theory states that a signal that approximated by its projection into space VR-1 can be 

equivalently represented by its projection into a lower resolution level space VJ and the difference spaces 

WR+WR+1+…+WJ. The range of resolution levels, J to R, in the signal multi-resolution representation is 

determined by the application and by the signal’s nature.  

In general, the number of parameters is
jc k  is the same as the number of grid points in the 

represented signal rectangular support. For example, for a support of N=(Nx,Ny)=(128,128), 

128x128=16384 parameters are required to represent the deformation in one direction. This is a large 

number of parameters to handle for most minimization algorithms. But, since the signal of interest - the 

elastic deformation - is by its nature smooth, lower resolution levels can be chosen to represent it with 

reasonable accuracy. For example, the signal’s wavele t decomposition when using four resolution levels, 

J=6 to R=3, contains 32x32=1024 parameters. In order to further reduce the number of parameters the 

optimization algorithm deals with at a time, we split the wavelet coefficients into groups classified by the 

sub-band and the level of resolution they represent. Each such group of wavelet coefficients corresponds 

to a different component of the deformation. In other words, the deformation is a combination of 

components with different levels of details (resolution levels) and orientations (sub-bands). A progressive 

approach is applied in which the wavelet coefficients that correspond to a low resolution signal 
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component were estimated first and the wavelet coefficients that correspond to a high resolution signal 

component were estimated last. Fig. 2 shows the order in which the wavelet coefficients were optimized. 

 

III.   ALGORITHM DESCRIPTION 

The registration of one elastic object to its homologue is done by estimating the nonlinear 

deformation that brings together a pair of corresponding surfaces. The deformation is determined by the 

registration parameters - the wavelet coefficients is
jc k  - that minimize the functional E(c). We define a 

functional E(c) which is a weighted sum of the sum of squared distances, e(c), and the elastic energy, 

L(c): )()()( ccc LeE ⋅+= ω . The parameter ω  is a weight constant that is empirically determined. The 

functional E(c) is a function of the registration parameters is
jc k  where s=1,…,4 and j=R,…,J. The full 

expression to E(c) includes terms that depend on products of pairs of is
jc k  coefficients with different s and 

j values. We found that these terms are small [24] , therefore we express E(c) as 
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jc  is a vector containing the wavelet 

coefficients within the j level of resolution and the s orientation and for the deformation in the direction i. 

Sections A and B below present the derivations of )( s
je c and )( s

jL c  as a function of the registration 

parameters. In the subsections below, for simplicity, we will refer to s
jc , )( s

je c , and )( s
jL c as c, e(c) and 

L(c), respectively. 

 

A.   e(c) – Sum of Squared Distances  

The distance between two points, )),,(( rmm STdd cx≡ , is the Euclidean distance between an 

already mapped point on the test surface ),()( cxca mT≡  and the closest point to it, mx′ , on the 

reference surface Sr. Similarly, a vector distance is defined as mm xcav ′−≡ )( . Note that mmd v= .  

The magnitude being minimized is the sum of the squared distances: 
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Local dependency of e(c) on the registration parameters, c, is achieved by substituting the Taylor 

expansion of dm in the vicinity of cl as follows: 
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B.   L(c) – Elastic Energy 

The second term, L(c), that is being minimized is the elastic energy: 
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where µ  and λ  are the Lame’s coefficients that reflect the elastic properties of the medium. Expanding 

with 1=µ  and 0=λ yields: 
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Substituting the signal as represented in (1) results in a linear combination of the integral: 
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where p,q=1,2. (An analytic evaluation of this integral is presented in [24].) In order to simplify the 

expression for the elastic energy we assume that the scaling and wavelet functions used satisfy a principle 

we call threefold  orthogonality [24]. The threefold orthogonality property states that the scaling and 

wavelet functions are orthogonal to each other and orthogonal to each other’s first and second derivatives. 

The consequence of satisfying this property of triple orthogonality is that minimizing the elastic energy of 

the deformation is equivalent to minimizing separately the elastic energy of the different deformation 

components.  

Let us continue and develop the expression in (6) for the signal component 
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Accordingly, the energy of the signal portion that corresponds to level j and orientation s is: 
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The matrix form of (8) is: 
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We proceed with applying the Taylor expansion of L(c) in the vicinity of cl  to (9): 
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 It can be shown that the matrix s
jQ  is linearly proportional to the Wavelet-Galerkin discretization 

matrix of the homogenous static Navier PDE [24]. This implies that minimizing the elastic energy is 

equivalent to solving the Navier PDE. The dimension of the matrix s
jQ  is 

)]22(2),22(2[ y
j

x
j

y
j

x
j NNNN −−−− ⋅⋅ . Hence, in the higher levels of resolution, the matrix s

jQ  is large 

and sparse. Note though that the matrix s
jQ  depends only on the chosen support, N, and the scaling and 

wavelet basis functions s
jΦ . s

jQ  does not depend on the object of interest (more specifically the object’s 

deformation). Therefore it can be computed once offline and then used for the deformation estimation of 

any input object data. Sparsity of the matrix s
jQ , as a result of the locality of the wavelet basis functions, 

contributes to the reduction of algorithm complexity both in terms of storage and computation time. For 

example, the density of the s
3Q  matrix (percent of non-zero matrix elements out of all matrix elements) is 

35%.  

 
 
C.   Parameters Optimization 

The expressions developed above for the sum of the squared distances, e(c), and for the elastic 

energy, L(c), are combined to result in the functional E(c): 
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The overall minimization algorithm had as input two sets of contour points: the test set and the reference 

set. These were aligned with an affine transform [26]. A range of wavelet resolution can be used for the 

alignment — typically; we used levels 6 to 3. The estimated wavelet coefficients included only those that 

correspond to wavelet basis functions whose support overlapped the test contour points. Starting with 

zero for coefficient values, an iterative procedure was used to compute coefficients that minimized the 

energy functional defined in (11). Iteration was both within and across resolution levels, using the M-L 

algorithm [27]. For example, returning to the typical case using levels 6 to 3, about 20 M-L iterations 
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were performed within each level and stepping through levels of resolution in the following order: 6, 5, 6, 

5, 4, 6, 5, 4, 3. Each iteration included computing the locations of the deformed test points, finding the 

closest points to these on the reference contour, and evaluation of matrix A and vector b, as in equation 

(11). 

 Using a coarse-to-fine approach, first we solve for the coefficients 1ˆ Jc  considering only the lowest 

resolution level, where j=J and s=1. Next, we proceed to the second sub-band, s=2 (still at the same 

resolution level, j=J), solving for 2ˆ Jc . In the same manner we solve for the other two sub-bands, s=2 and 

s=4, at resolution level j=J. We proceed down the pyramid to the next level of resolution j=J-1, solving 

for the different sub-bands at this level, s=2,3,4. Hence, the computation of the wavelet coefficients is 

done progressively until the estimation of all coefficients is completed (see Fig. 2). 

 This coarse-to-fine approach, enabled due to the wavelet local and multi-resolution 

representation, offers important computational advantages: scalability and adaptability. Two factors 

contribute to the approximation error: the smoothness of the deformation and the wavelet resolution level. 

The approximation error is proportional to ( ) )()2( xu ppjc ⋅ , where the constant c and the exponent p 

depend on the choice of wavelet [21]. Thus, the smaller j is, the smaller the approximation error. 

Consequently, there is a trade-off between accuracy of the deformation approximation and the algorithm 

complexity. The more resolution levels the algorithm uses to estimate the elastic deformation, the more 

accuracy will be achieved and the more storage and computation time will be required. This algorithm 

scalability is discussed further in Section IV.  

 The degree of smoothness of the deformation signal, ( ) )(xu p , also contributes to the estimation 

error. Due to the locality of the wavelet representation, irregular regions in the deformation signal will 

affect the error only locally. Hence, there might be a situation where the error is small everywhere except 

for these local regions. In this case, using a higher resolution level only at these regions will reduce the 
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overall error without introducing large increase in complexity. This algorithm allows the use of an 

adaptive grid, although this option was not implemented in the current algorithm.   

 

IV.   ALGORITHM EVALUATION 

The evaluation of the registration algorithm developed in this study was done by applying a known 

transformation to two closed contours - an ellipse and the external contour of a rat brain section – referred 

to as the test objects. These test objects were centered at a 128x128 rectangular support for which the 

deformation u(x) was defined. Three transformations were applied to the test objects to create the 

reference objects: (1) displacement Td(x), (2) affine transformation Ta(x), and (3) affine and elastic 

transformation Ta(x)+Te(x). The three transformations were defined as follows: 

,
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where )(2.0 xx −=α and )(2.0 yy −=β . The elastic transformation, which is an analytic solution of 

the homogenous static Navier PDE, was scaled to result in an average and a maximum deformation along 

the objects’ external contour that is about 5% and 15% of object radius, respectively.  

 The above transformations were applied to points along the test contour xtest to result in the 

reference contour xref = T(xtest). The objective was to estimate the applied deformation everywhere within 

the test object. Contour Error (CE) was defined as the distance between a point at the test contour and the 

closest point to it at the corresponding reference contour, whereas Actual Error (AE) is the distance 

between a test point and the corresponding reference point. We evaluated both errors because in the 

experimental setting we do not know the actual point correspondence and therefore the AE is unknown. 

Note that, by definition, the CE is always smaller than the AE.  
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 In Fig. 3 the test objects: (a) ellipse and (b) rat brain section, the mapped test objects (that resulted 

in by apply ing the estimated deformation to the test object), and the reference objects (that resulted in by 

applying the analytic deformation to the test object) are shown. Fig. 3 shows the distance between 

mapped test objects to the reference objects for concentric  layers within each reference object. The 

average Initial Deformation (ID), CE, and AE are shown in Table I. We see that the algorithm can recover 

almost completely translational transformation; the alignment error for Td(x) is much smaller than the 

errors for other transformations, and the alignment error for the rat brain is smaller than that for the 

ellipse. We believe that for a complex object’s surface (in this case a rat brain section) more information 

is provided about actual correspondence than for a symmetric object’s surface (in this case ellipse). In the 

case of rat brain section, the algorithm yields for an average ID of 7.1 pixels an average AE of 0.35 pixels 

and an average CE of 0.27 pixels.   

 One of the wavelet-based alignment algorithm advantageous characteristic is scalability. There is 

a trade-off between accuracy of deformation approximation and algorithm complexity. This trade-off can 

be controlled by the number of resolution levels one chooses to include in the deformation estimation. 

Table II shows the maximum number of registration parameters (wavelet coefficients) that reside at each 

orientation and at each resolution level of the wavelet decomposition. Since only coefficients that 

correspond to basis functions that overlap an object’s boundary were estimated the actual number of 

registration parameters that were estimated is lower than the maximum. 

   Figures 4 and 5 show the relative AE (ratio of AE and ID) and the relative CE (ratio of CE and 

ID) where affine and elastic transformations were applied to the rat section, respectively. The relative 

errors are shown for different resolution levels and as a function of section’s concentric layers (external 

layer (1) through internals layers (2-20)). Table III shows the relative error on the external contour and the 

algorithm’s complexity as a function of the resolution levels number. The trade-off between 

approximation accuracy and algorithm complexity is apparent; the more deformation estimation accuracy 

is desired the more registration parameters and algorithm running time are required. The running times 
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reported in Table III are based on algorithm implementation using Matlab (version 6.1) on a Pentium IV 

computer (1.7 GHz, 1G Byte RAM). 

 

V.   EXPERIMENTAL RESULTS 

A.  Data Acquisition 

 Eleven mouse brains (genetic strain C57BL/6J) were studied. One, the reference brain, was used 

to construct a three dimensional brain volume atlas [28]. The other ten brains are the test brains. The test 

brains were embedded in celloidin and serially sectioned coronally as described in [29]. Briefly, brains 

were dehydrated through a graded series of ethanol and ethanol/ether baths before being embedded in 

celloidin. The brains were cut coronally into 30 µm sections and every section saved. Floating sections 

were stained with cresyl violet, and every section was mounted on glass slides, and cover slipped with 

Permount. 

 The performance of the registration algorithm was evaluated in the two-dimensional setting. A 

matching reference section for each test section was defined visually using the MacOStat software 

package [30]. Three pairs of such corresponding 2D coronal sections were defined from three different 

locations - rostral, intermediate and caudal levels of the olfactory bulbs as is shown in Fig. 6. The high 

morphological variability between corresponding sections is clearly evident. Nineteen anatomical 

structures (see Table IV for structures’ Nomenclatures based on the Franklin and Paxinos atlas [31].) were 

manually delineated on these sections, as shown in Fig. 6. The delineation of the test section was done on 

images at a resolution of 4.3µm/pixel while that of the reference brain at a resolution of 8.7 µm/pixel.  

 

B.   2D Registration of Sections from the Olfactory Bulbs of the Mouse Brains 

 As mentioned above, three coronal sections were selected from each of ten experimental brains. 

Each section was aligned to its matching reference section. To do so a subset of the manually delineated 

contours were used to guide the alignment process and the remaining ones were used for performance 

evaluation. Two performance measures were computed for each structure and averaged across the ten 
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brains: error (average residual distance between corresponding contours) and overlap (area of overlap of 

corresponding structures divided by the area of the reference structure). The error and overlap were 

computed for the data before the nonlinear alignment (after an affine transform was applied) and after the 

wavelet alignment.  

Two cases for wavelet alignment were examined, Case I and Case II. In Case I the external contour 

alone guided the registration while in Case II the alignment was guided by the external contour as well as 

some internal ones. Tables IV, V, and VI contain the results (the structures that guide the registration are 

denoted in bold). The three rows at the bottom of tables IV, V, and VI show averages over all structures, 

weighted by structure area. We tabulate averages for registration guiding (RG) structures, for registration 

validating (RV) structures, and for all structures (Total). 

As can be seen from Tables IV, V, and VI the reduction of the error is substantial: on average (for 

all sections combined) from 3.4 to 1.5 for Case I and to 0.6 for Case II. The average increase in the 

overlap between corresponding structures is from 75% to 83% for Case I and to 91% for Case II. Fig. 7 

shows sample images of alignment. The images in Fig. 7 show the reference sections and their structures’ 

contours in dashed/blue lines. On the top of each section are drawn the contours of the corresponding 

mapped test section where structures used to drive the alignment are shown in red and structures used for 

validation are shown in green. In the presence of high shape variability the improvement of Case II over 

Case I is apparent.         

 

V.   CONCLUSION 

A registration algorithm that compensates for nonlinear differences between two homologues 

elastic objects is presented. The application of wavelet multi-resolution representation to the elastic 

deformation enabled complexity reduction of the optimization algorithm. The locality of the basis 

functions produced sparse matrices and the wavelet multi-resolution allowed separate handling of the 

optimization procedure for parameters of different signal components. The method developed in this 

study, validated with synthetic data, shows satisfactory results. The effectiveness of this registration 
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algorithm as a means for anatomical localization of internal structures in the olfactory bulbs of mouse 

brains was examined. This algorithm for brain mapping results in a promising performance in spite of 

having to overcome two main problems. The first is the large anatomical variability between 

corresponding structures in two different brains as is evident from Fig. 6. The second problem was that 

the registration algorithm was applied to two-dimensional sections. Registration of two homologous 

sections (instead of registration of two brain volumes) requires the intermediate step of extracting two 

corresponding sections from the brain volumes. Since the elastic deformation that a test brain undergoes 

is in three dimensions, it is not plausible to have a test section that corresponds fully to an in-plane 

reference section. Therefore, modeling elastic deformation is likely to be more accurate when applied in 

the three-dimensional case. The generalization of the algorithm presented in this study into three-

dimensions is straightforward. In the future we plan to make this extension and evaluate the performance.  
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FIGURE CAPTIONS 

Fig. 1.  The four separable 2D wavelet basis functions based on orthogonal Coiflets wavelet. 
 
Fig. 2.  The progressive order in which registration parameters were estimated. 
 
Fig. 3.   The test object: (a) Ellipse and (b) rat brain section (in blue), overlapped by the mapped test 

object (in red), and the reference object (in dotted green). 
 
Fig. 4. (a) Relative actual error, AE/ID, and (b) relative contour error, CE/ID, where an affine 

transformation was applied to the rat section. The errors are shown for different resolution levels 
and as a function of concentric layers (external layer (1) through internals layers (2-20)). 

 
Fig. 5. (a) Relative actual error, AE/ID, and (b) relative contour error, CE/ID, where an elastic 

transformation was applied to the rat section. The errors are shown for different resolution levels 
and as a function of concentric layers (external layer (1) through internals layers (2-20)). 

 
Fig. 6. Matching coronal sections from the atlas (left) and an experimental brain (right). The top pair 

located at a rostral level, the second pair located at an intermediate level, and the bottom pair 
located at a caudal level of the olfactory bulbs. 

 
Fig. 7.  Reference sections and their structures’ contours are shown in dashed/blue lines. On the top of 

each section are drawn the contours of the corresponding mapped test section where structures 
used to drive the alignment are shown in red and structures used for validation are shown in 
green.. Case I (left) and Case II (right) are shown for caudal section (top), intermediate section 
(middle), and rostral section (bottom).  

 
 

TABLE CAPTIONS 
 
TABLE I:  AVERAGE INITIAL DEFORMATION (ID), CONTOUR ERROR (CE), AND ACTUAL ERROR 

(AE) WHEN APPLYING TRANSLATION (TD), AFFINE (TA), AND ELASTIC (TE+TA) 
TRANSFORMATIONS TO AN ELLIPSE AND TO A RAT BRAIN SECTION (ERRORS ARE 
MEASURED IN PIXELS) 

 
TABLE II: NUMBER OF REGISTRATION PARAMETERS AT EACH RESOLUTION LEVEL AND AT EACH 

ORIENTATION OF THE WAVELET DECOMPOSITION 
 
TABLE III: RELATIVE ERROR ON EXTERNAL CONTOUR AND ALGORITHM COMPLEXITY FOR THE 

REGISTRATION OF RAT SECTIONS INCLUDING DIFFERENT RESOLUTION LEVELS 
 
TABLE IV: LIST OF THE EXTERNAL/INTERNAL STRUCTURES IN THE MOUSE OLFACTORY 
 
TABLE V: THE AVERAGE ERROR AND OVERLAP RATIO OF ROSTRAL SECTIONS FOR AFFINE AND 

WAVELET ALIGNMENT 
 
TABLE VI: THE AVERAGE ERROR AND OVERLAP RATIO OF INTERMEDIATE SECTIONS FOR AFFINE 

AND WAVELET ALIGNMENT 
 
TABLE VII: THE AVERAGE ERROR AND OVERLAP RATIO OF CAUDAL SECTIONS FOR AFFINE AND 

WAVELET ALIGNMENT 
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TABLE I 
AVERAGE INITIAL DEFORMATION (ID), CONTOUR ERROR (CE), AND ACTUAL ERROR (AE) WHEN 

APPLYING TRANSLATION (TD), AFFINE (TA), AND ELASTIC (TE+ TA) TRANSFORMATIONS TO AN  
ELLIPSE AND TO A RAT BRAIN SECTION (ERRORS ARE MEASURED IN PIXELS) 

 
 Ellipse Rat Brain Section 

trans. ID CE AE ID CE 
 

AE 

Td 7.071 0.246 E-7 0.246E-7 7.071 0.178 E-7 0.178 E-7 
Ta 7.708 0.323 0.481 7.074 0.106 0.143 

Te+ Ta 7.101 0.351 0.586 7.074 0.271 0.351 
 

 
 
 

TABLE II 
NUMBER OF REGISTRATION PARAMETERS AT EACH RESOLUTION LEVEL AND AT EACH ORIENTATION OF 

THE WAVELET DECOMPOSITION 
 

Resolution 
level 

 Max  
Param. No. 

Estimated  
Param. No. 

6 4 4 
5 16 16 
4 64 64 
3 256 230 
2 1024 495 
1 4096 1015 

 
 
 
 

TABLE III 
RELATIVE ERROR ON EXTERNAL CONTOUR AND ALGORITHM COMPLEXITY FOR THE REGISTRATION OF 

RAT SECTIONS INCLUDING DIFFERENT RESOLUTION LEVELS 
 

Resolution 
Levels CE AE 

Params. 
No. 

Time 
(secs) 

6 0.062 0.146 32 71 
6 to 5 0.044 0.107 128 157 
6 to 4 0.020 0.082 512 279 
6 to 3 0.012 0.075 1084 466 
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TABLE IV 
LIST OF THE EXTERNAL/INTERNAL STRUCTURES IN THE MOUSE OLFACTORY 

 
The Olfactory Bulbs Anatomical Structures 

Structure  Description 
GrO granule layer, olfactory bulb 
E/OV ependyma & olfactory ventricle  
aci anterior commissure, intrabulbar 
IPl internal plexiform layer, olfactory bulb 
Mi mitral cell layer, olfactory bulb 
EPl external plexiform layer, olfactory bulb 
Gl glomerular layer, olfactory bulb 
AOE anterior olfactory nucleus, external 
vn vomeronasal nerve 
EPlA external plexiform layer accessory olfactory bulb 
MiA mitral cell layer, olfactory bulb 
AOL anterior olfactory nucleus, lateral 
AOM anterior olfactory nucleus, medial 
AOD anterior olfactory nucleus, dorsal 
dlo dorsolateral olfactory tract 
GlA glomerular layer, accessory olfactory bulb 
lo lateral olfactory tract 
AOV anterior olfactory nucleus, ventral 
OB olfactory bulb 

 
 
 

 
 

TABLE V 
THE AVERAGE ERROR AND OVERLAP RATIO OF ROSTRAL SECTIONS FOR AFFINE AND WAVELET 

ALIGNMENT 
 

 Affine (linear) Case I (wavelet) Case II (wavelet) 
Structure  Error Overlap Error Overlap Error Overlap 
GrO 3.25 0.87 3.16 0.86 0.14 1.00 
IPl 3.24 0.21 3.11 0.22 0.55 0.73 
Mi 3.18 0.25 2.98 0.26 0.75 0.70 
EPl 3.06 0.70 2.37 0.80 1.37 0.92 
Gl 3.16 0.66 0.77 0.83 1.04 0.72 
OB 3.19 0.91 0.33 0.99 0.16 1.00 
RG* 3.19 0.91 0.33 0.99 0.16 1.00 
RV+ 3.13 0.60 2.35 0.71 0.86 0.85 
Total 3.16 0.75 1.36 0.84 0.52 0.92 

* registration guiding structures, + validation guiding structures 
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TABLE VI 
THE AVERAGE ERROR AND OVERLAP RATIO OF INTERMEDIATE SECTIONS FOR AFFINE AND WAVELET 

ALIGNMENT 
 

 Affine (linear) Case I (wavelet) Case II (wavelet) 
Structure  Error Overlap Error Overlap Error Overlap 
GrO 3.52 0.83 3.52 0.83 0.18 1.00 
E/OV 2.84 0.26 3.18 0.26 1.67 0.50 
aci 2.98 0.31 3.07 0.31 1.17 0.58 
IPl 3.63 0.26 3.57 0.26 0.60 0.77 
Mi 3.61 0.23 3.53 0.23 0.91 0.61 
EPl 3.57 0.75 3.21 0.75 1.69 0.91 
Gl 3.48 0.71 1.68 0.71 1.27 0.74 
OB 3.38 0.99 0.33 0.99 0.15 1.00 
RG 3.40 0.92 0.33 0.99 0.15 1.00 
RV 3.47 0.60 2.95 0.67 1.02 0.85 
Total 3.43 0.76 1.67 0.83 0.59 0.92 

 
 
 

TABLE VII 
THE AVERAGE ERROR AND OVERLAP RATIO OF CAUDAL SECTIONS FOR AFFINE AND WAVELET 

ALIGNMENT 
 

 Affine (linear) Case I (wavelet) Case II (wavelet) 
Structure  Error Overlap Error Overlap Error Overlap 
GrO 2.74 0.80 2.72 0.82 0.26 0.97 
E/OV 2.12 0.40 2.15 0.43 1.71 0.50 
aci 2.24 0.47 2.23 0.49 1.14 0.61 
IPl 1.87 0.26 1.73 0.28 0.65 0.65 
Mi 2.05 0.28 1.92 0.32 0.97 0.63 
EPl 2.69 0.70 2.40 0.75 1.96 0.83 
Gl 2.38 0.49 2.12 0.58 2.24 0.56 
AOE 4.46 0.40 4.77 0.34 2.59 0.75 
vn 3.83 0.42 3.42 0.45 3.68 0.51 
EPlA 3.60 0.30 3.76 0.25 2.64 0.35 
MiA 4.84 0.33 4.91 0.30 3.30 0.52 
AOL 3.46 0.75 3.65 0.76 0.20 0.97 
AOM 3.74 0.44 3.71 0.43 2.84 0.57 
AOD 3.67 0.73 4.20 0.67 0.27 0.96 
dlo 4.35 0.18 4.55 0.20 2.72 0.40 
GlA 3.81 0.50 3.46 0.50 3.27 0.62 
lo 2.47 0.40 2.19 0.60 2.25 0.62 
AOV 3.71 0.46 4.05 0.48 1.89 0.77 
OB 4.06 0.90 0.36 0.99 0.22 0.99 
RG 4.09 0.90 0.37 0.99 0.23 0.99 
RV 2.91 0.58 2.82 0.62 2.07 0.66 
Total 3.55 0.75 1.47 0.82 0.79 0.89 
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Fig. 1. The four separable 2D wavelet basis functions based on orthogonal Coiflets wavelet. 
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Fig. 2. The progressive order in which registration parameters were estimated. 
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Fig. 3.   The test object: (a) Ellipse and (b) rat brain section (in blue), overlapped by the mapped test 
object (in red), and the reference object (in dotted green). 
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Fig. 4. (a) Relative actual error, AE/ID, and (b) relative contour error, CE/ID, where an affine 
transformation was applied to the rat section. The errors are shown for different resolution levels and as a 
function of concentric layers (external layer (1) through internals layers (2-20)). 
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Fig. 5. (a) Relative actual error, AE/ID, and (b) relative contour error, CE/ID, where an elastic 
transformation was applied to the rat section. The errors are shown for different resolution levels and as a 
function of concentric layers (external layer (1) through internals layers (2-20)). 
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Fig. 6. Matching coronal sections from the atlas (left) and an experimental brain (right). The top pair 
located at a rostral level, the second pair located at an intermediate level, and the bottom pair located at a 
caudal level of the olfactory bulbs. 
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Fig. 7. Reference sections and their structures’ contours are shown in dashed/blue lines. On the top of 
each section are drawn the contours of the corresponding mapped test section where structures used to 

drive the alignment are shown in red and structures used for validation are shown in green.. Case I (left) 
and Case II (right) are shown for caudal section (top), intermediate section (middle), and rostral section 

(bottom).  
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