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Overview

Gene expression microarray technology is rapidly
becoming an important technique in genomic neu-
roscience. Despite the tantalizing promise of mas-
sively parallel analysis of gene expression, or more
appropriately, steady-state transcript abundance,
many are left scratching their heads at heat-maps,
gene-lists, and other attempts at distillation of rather
complex results. Microarray data analysis is often a
hypothesis-generating tool, creating as many ques-
tions as answers, and methods for the proper treat-
ment of data are still catching up to the technology
with which it is acquired. For the typically trained
molecular biologist, deploying this method requires a
major shift in thinking toward statistical approaches
to experiments, reliance on converging evidence,
and the potential for subjectivity in the analysis.
Growing pains aside, we are beginning to tap into
the full potential of this technique, with advanced
novel strategies for the use of the microarray to
address a large variety of research questions ranging
from the simple two-group comparisons, to the dis-
section of gene-regulatory networks and mapping of
regulatory loci modulating expression. This chapter
is intended to highlight major issues in array analysis
and provide a practical starting point for the use of
microarrays in the neuroscience lab.

I. Experimental Design for Research
Questions

“To consult a statistician after an experiment is finished
is often merely to ask him to conduct a post-mortem

examination. He can perhaps say what the experiment
died of.” R.A. Fisher, 1938

Individual microarrays were initially marketed as
experiments, a controlled experiment on a single
chip allowing simultaneous expression quantifica-
tion for thousands of transcripts simultaneously. The
array is more properly viewed as a measuring device
for collection of multiple simultaneous observations
from a single experimental unit, i.e., an individual
mRNA sample. Basic principles of experimental
design and analysis can be applied to the chip con-
sidered in this manner. These include the need for
replication, within conditions of interest, to avoid
confound of the units, with the effect of interest.

Good experimental design begins with a careful for-
mulation of the research question PRIOR to the col-
lection of data. Though most of the early array soft-
ware and designs were used for two group compar-
isons, diverse experimental questions are now being
addressed with these methods. Here are some exam-
ples:
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Which genes are up regulated or down regulated in
my mutant mouse’

How can I discriminate tumor cells from normal
cells?

How can I differentiate between several different
types of tumors?

What genes are differentially expressed in different
brain regions and how does this differ by sex or
strain?

What is the time course of gene expression
following retinal injury?

Which genes are co-regulated?

Does variation in gene expression correlate with
variation in other traits?

What are the genetic determinants of gene
expression!

Each of these research questions requires different
experimental designs and analyses. Well-character-
ized statistical procedures can be adapted to address
these questions more directly than many of the ad-
hoc methods that are often used for microarray
analysis. Furthermore, these methods allow one to
estimate and/or control statistical error rates. The
influence of factors that are not of explicit interest to
the experimenter can be reduced or eliminated using
block designs and replication. Consider whether
your goal is detection, i.e., to find a few “signature
genes” or dissection, to characterize the involvement
of a large set of differentially expressed genes. This
strongly affects the number of replicate arrays you
will need. Understand what types of replication are
needed. Technical replicates (hybridizations of the
same samples to multiple arrays, using different dyes
for each sample in the case of the two color system)
do not allow one to make claims about biological
variation, which requires biological replicates (sam-
pling from multiple individuals within the experi-
mental groups).

Pooling of samples is a means of reducing environ-
mental nuisance factors. Many frequently ignored
variations in the laboratory environment including
handling, housing, temperature, humidity, season, and
time of day interact with sex and genetic factors, par-
ticularly as they can affect behavior (1) and thus pre-
sumably gene expression in the brain. It is very impor-
tant to note that even though one does not explicitly
consider these variables, they can systematically
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confound an experiment. In other words, unplanned
does not equal random. The occurrence of these
confounding conditions must be equally likely in
each of the experimental groups. Once the samples
are pooled, they cannot be taken apart. Consider
whether you will later want to explore other factors,
i.e., if the experiment is to be expanded to include
other groups. For example, if one is interested in sex
differences in gene expression, but has chosen to
pool samples from across the estrous cycle, the infor-
mation from cycle phase differences will be lost. If
one were interested in the correlation of gene expres-
sion within individuals, rather than that which results
from the group effect, again, pooling would be inap-
propriate. Pools also can be biased by individual sam-
ples, particularly if some of the samples in the pool are
degraded. However, the risks of pooling have been
found to be minimal compared to the gains of running
the samples on individual arrays (2).

Consult a statistician before undertaking costly data
collection to be sure that the experimental design is
valid, randomized to avoid confounds, sufficiently
powered, and can properly address your research
question. Having a clear understanding of how the
data will be used once collected can help avoid cost-
ly and often irretrievable design errors!

Fig. 1 A statistical analysis (t-test) for H2-D (Affymetrix
Mouse U74Av2 Probe Set 197541_f_at), a transcript with a
misleading fold change of 3.4. The t-test p-value is 0.005,
non-significant when considering 12422 tests performed on
the array. The high degree of overlap between the two data
sets is not taken into account by the fold change approach.
Box and whisker plots show the medians, 25% and 75%
quartiles, and whiskers to the nearest point outside within
1.5 interquartile ranges. Projected normal distributions are
mean centered. Note that the data are actually bi-modal
within each sex, suggesting that another factor explaining
gene expression variation is present in the data.

Il. Experimental Designs for Spotted
Microarrays

The experimental designs and approaches described
here can be applied to both commercially manufac-
tured oligonucleotide arrays and the two-color spot-
ted microarrays. However, there are some additional
design questions regarding the sample application to
the arrays that occur in the use of the two-color sys-
tem. Much has been written about improving the
efficiency of experimental designs for spotted
microarrays (3). The simplest approach to spotted
microarray experiments is to use a single large pool
of common reference mRNA, which can be made or
purchased from commercial vendors. The advantage
to this approach is that the reference stock is always
available, and thus, additional samples can be added
easily to the sample design. More complex designs
are aimed primarily at reducing chip costs. These are
a bit more difficult to extend, and depend heavily on
good hybridization results. The balance of an exper-
iment, and thus the usefulness of the entire set of
data can be compromised or lost if a single compo-
nent fails. These designs have another practical
drawback. Technicians must keep very careful track
of which samples are to be hybridized together and
which dye is to be used with each. Even with the
best espresso on board, this is no mean feat! A com-
mon reference sample reduces this complexity, leav-
ing only the need to counter-balance dyes between
the reference and experimental groups. Half of the
arrays in each group should be hybridized to Cy5 Red
and Half to Cy3 Green. This will allow a good
assessment of the array effects, dye effects, and group
effects. Another common approach, which uses half
the number of arrays, is the ‘Dye Swap.” In this
design, two mRNA samples are obtained from each
group or condition in the experiment, and split into
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two aliquots. One of each is labeled with each dye,
and the samples are then hybridized with the sample
having the opposite group and dye. Though
Affymetrix arrays are much more consistent, batch
effects in processing can occur. Technical replicates
can be used to verify consistency.

lll. Group Comparisons

Early microarray analysis employed a simple quantifi-
cation of “fold-changes” in gene expression levels
between a pair of experimental conditions. This
approach was developed when a microarray experi-
ment consisted of a pair of manufactured arrays, or a
single spotted slide, with one sample from each of
two conditions. Because this approach contains no
biological replication, an estimate of the noise in the
experiment is lost. Were the two samples kept con-
sistently at the same temperature at all times and for
the same duration? Were the mutant mouse male
and the wild type female? Now that replicate samples
are becoming the norm, consideration of this noise is
possible. While fold change may have intuitive
appeal for biologists, the approach is problematic for
several reasons. Fold change merely considers the
effect size without respect for variability in that
effect. An example of a misleading fold change is
shown in Figure 1. This is particularly problematic in
array experiments in which there is very low sample
size and the precision of the mean estimates is poor.
There is no ability to control the error rate, and arbi-
trary fold change cut-offs have emerged. The
approach also extends poorly to more complex
experimental designs. Many would agree that even
small changes in signaling molecules can have mas-
sive biological effect, and the fold change cut-off pre-
vents their detection.

Statistical approaches essentially estimate the signal
to noise ratio. The two group t-test or multi-group
ANOVA models compare variability between groups
to variability within, effectively asking the question,
is expression of this gene more similar between indi-
viduals in the same group than it is different from
individuals in the other groups? Other sources of
variation in feature intensity that relate to the
hybridization, array feature, dye, or other technical
factors can all be included in the statistical model of
gene expression, so that only the signal actually
attributable to the conditions of interest can be
assessed (4). Non-parametric statistical methods
have also been proposed to evaluate group differ-
ences, including permutation based tests and
Wilcoxon or Kruskal-Wallace tests. It should be
noted that the method of normalization (discussed
by Dr. Miles) is more influential than the use of para-
metric versus non-parametric analysis (5). A statistic
is calculated to test whether the null hypothesis of
no expression difference is true, or if it should be
rejected in favor of the alternative hypothesis of an
expression difference. A probability of getting a
chance result of the same magnitude of that observed
is calculated (p-value). This is estimated from theo-
retical distributions or via computational approaches
such as the permutation test, which estimates the
exact p-value obtainable from the sample data. A
threshold, alpha (typically 0.05 by historical conven-
tion), is chosen for an acceptable p-value, and the
resulting p-value is compared to this threshold to
determine whether to retain or reject the null
hypothesis. These approaches can be extended to
analysis of factorial designs, in which several treat-
ments (e.g., sex and brain tissue type) are considered
simultaneously. Contrast analysis (Figure 2) can be
employed to evaluate particular comparisons of
interest while maintaining statistical power. For

Gene Expression Over Time

Fig. 2 Expression of rat transcripts at various time
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points after injury. Contrast analysis allows
categorization of transcripts by response profile.
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example, in an experiment measuring gene expres-
sion at five time points following injury, one may
wish to contrast expression in the early time points
vs. the later time points.

Limitations on problem sizes imposed by computa-
tional resources often demand that only a subset of
interesting genes be analyzed. Often, the fold change
is applied to further reduce the set of “interesting”
results after a statistical test is applied. Particularly in
the event that one is interested in genetic dissection,
this can be a hazardous approach! Many important
genes have statistically detectable expression differ-
ences in different groups, with very small but consis-
tent effects. The notion that a doubling of gene
expression is required for an interesting biological
effect is questionable to say the least, particularly for
genes residing in early stages of signal transduction
cascades, or that regulate transcription of many
other genes. Despite this major drawback, the
approach has some practical value, only the large
effect size differences are likely to be validated using
other confirmatory methods such as RT-PCR. If
experimental validation is not the primary concern,
it is quite reasonable to consider more than the top
few transcripts on the ‘gene list’. This is particularly
so if comparisons of up- or down- regulated tran-
scripts to gene ontologies, clustering, or further mod-
eling approaches capable of using larger sets of genes
will be employed. Particularly if follow-up studies
using text mining, sequence analysis, or other bioin-
formatics approaches are to be used, the gene list
might be best pruned using known gene-gene rela-
tionships, or the analyses can be done on repeated
draws of the differentially expressed genes.

Fig. 3 g-value plots from qvalue, a program for estimation
of gene specific false discovery rates. A. Estimation of the
proportion of true null hypotheses, non-significant results.
B. The g-value, proportion of false positives observed at a
given p-value. C. The number of significant tests observed
at a particular false discovery rate (g-value cut-off). D. The
number of false positives among a given number of signifi-
cant tests.

IV. Multiple Testing Considerations

The simultaneous evaluation of thousands to tens of
thousands of transcripts can result in a high rate of
detection of chance effects or False Positives. This is
called the Type [ error rate, the probability of reject-
ing the null hypothesis given that it is true. With a
significance threshold alpha = .05 and 100 genes
being tested, the probability of a false positive on a
single test is still .05, but the probability of at least
one false positive is much greater, exceeding 99%.
Thus, while the comparison-wise error rate is only
5%, the “Family-wise” error rate is much higher.
Strict procedures for controlling the family-wise Type
[ error rate such as the Bonferroni adjustment are too
conservative for the thousands of tests being
employed, leading to a high rate of false negatives.
This can be detrimental if dissection is the goal, and
subsequent analysis of large sets of genes is to be per-
formed. Often these procedures assume that tests are
independent, but many transcripts are co-regulated
and thus individual expression comparisons are high-
ly correlated. More flexible and appropriate error
control procedures are being developed with the
demands of high-throughput biology in mind. The
false discovery rate (6) controls the rate of false dis-
coveries, i.e., the fraction of false positives among the
rejected null hypotheses. This is more powerful (less
conservative) than a strict Bonferroni adjustment,
and much more intuitive. For 100 gene expression
values declared to be significantly different between
groups, 10% are likely to be false positives. Keep in
mind, we cannot say which ones they are! The posi-
tive false discovery rate, pFDR, and estimation of g-
values (7) (Figure 3), is a novel approach to the mul-
tiple testing problem which does not involve the
determination of a rejection threshold or control of
Type 1 error, but rather the estimation of the rate of
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false positives that one would encounter when
rejecting the null hypothesis at the level of each
observed statistic. These applications are promising
and commensurate with the goals of most microarray
applications. Software for g-value estimation is freely
available at http://faculty.washington.edu/~jstorey/
qvalue/ (R is required, see the section on free soft-
ware).

V. Multivariate Analysis

Gene by gene analysis often leads to a list of signifi-
cantly differentially expressed genes of arbitrary, yet
overwhelming length. The high-dimensionality of
microarray data can be daunting, and not conducive
to visual presentation or interpretation of results.
Reducing the dimensionality through principal com-
ponent or singular value decomposition, clustering,
or multidimensional scaling can greatly facilitate
data interpretation. However, these analytic meth-
ods often produce results that may not be readily
interpreted with existing biological knowledge.

Principal components analysis is a method for iden-
tifying linear combinations of variables that explain
the most overall variability in the data. Typically, the
first two dimensions of these new variables are con-
sidered, but if others explain a large portion of the
variance, they may also be used. By examining the
weights on the variables in the measure, one can
often identify meaningful patterns in genes that are
differentially expressed, and can determine which
samples have elevated and down-regulated levels of
these genes. The analysis can be performed in either
the gene dimension, to reduce the number of gene
variables that explain array variation. For example,
the weighted sum of a set of 1000 highly correlated
genes is a single new variable derived from 1000 gene
variables. In the sample dimension, the goal is to

reduce the number of array variables to explain vari-
ation in gene expression.

Clustering methods (8) have been very popular for
the analysis of expression data, particularly when
there are more than two groups of samples being
compared. Again, ANOVA methods can be applied
in this situation, but the intuitive visual displays that
can be generated from cluster analyses serve as a
ready aid in interpretation. Filtering of results prior
to clustering using parametric statistical tests such as
the t-test or ANOVA is often recommended. Various
methods of clustering are possible. Hierarchical clus-
tering calculates distances between genes using a
variety of distance metrics, and assigns them to clus-
ters based on the distance between each gene and
the point nearest to it. Nearest neighbor clustering
assigns genes to clusters based on the distance to the
nearest neighboring gene within the cluster. The
centroid method assigns genes based on their dis-
tances to the geometric center of the clusters, and is
a more unbiased method. The result of this type of
analysis is a ‘dendrogram.” K-means clustering is a
computationally efficient approach that assigns
genes randomly to a user-selected number of clusters,
and iteratively reassigns them until the distances
between the genes and their centroids is minimized.
Beware, you will get the result you ask for! Try sever-
al k-values. Bootstrapping and other procedures have
been proposed to ensure that the result obtained is
reliable (9). The results of cluster analysis are pre-
sented as “heat maps” showing genes that are up or
down-regulated together, along with a dendrogram
in the margins showing the proximity of the genes
(Figure 4). Once clusters are identified, comparisons
to known ontology, sequence databases, and other
resources can be performed.
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Fig. 4 Hierarchical clustering analysis performed
in dChip. Genes were first filtered by t-test p-
values < .0001 (a permutation based false dis-
covery rate of 1.3%) for the comparison
between allelic statuses at a chromosome 9
genetic marker. Allelic status is that of the
majority of chips in each portion of the figure.
This cluster plot reveals that for several genes,
C57BL/6J and DBA/2] allele at this location is
not the only factor, probably due to the influ-
ence of other genetic loci on gene expression.
This software also identifies highly represented
Gene Ontology, Protein Domain, Pathway or
Chromosome categories among the clusters.
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VI. Regression, Correlation, and QTLs

The statistical approach to microarray data allows the
opportunity for the application of this technology to
novel ways. Microarray data collected in reference
populations such as inbred mice can be compared to
other data collected in those same mice. This ‘ rela-
tional data model’ allows a direct connection
between disparate databases, and allows for powerful
analysis of the relation between genotypes, neuro-
behavioral phenotypes, and molecular phenotypes
such as microarray measurements of gene expression.
Rather than simply comparing groups to make calls of
up or down regulation in expression, in this approach,
the gene expression levels obtained in the reference
population are correlated with either categorical val-
ues, such as genotype at known genetic markers, or
phenotypes spanning the range from other gene
expression levels to brain structure, function, and
behavior. Figure 5 shows a gene-to-gene correlation,
and a gene to mouse water maze latency correlation
(10). These genetic correlation analyses can be used
to map quantitative trait loci (QTLs), which are
regions of the genome that determine level of expres-
sion of a trait (Discussed by Dr. Williams). This
approach was initially performed in yeast (11) and has
been done in the mouse forebrain, cerebellum (12),
hematopoietic stem cell lines (13), and liver (14). By
performing this analysis in a well-characterized
recombinant inbred mapping panel, correlation with
over 20 years of neurobehavioral data is possible
(www.webqtl.org). To access this data, and examine
gene expression correlations with any other pheno-
type, the user need only search for genes or pheno-
types of interest or enter their own phenotypic data
collected in the BXD recombinant inbred strain set.
From there, identification of loci influencing levels of
the trait and determining which gene expression lev-
els correlate with the trait is possible.

VII. From Genes to Gene Networks

Going beyond the perspective of individual genes is
the exciting potential of high throughput biology.
There is a wealth of techniques being developed for
the simultaneous use of expression data from thou-
sands of transcripts to study networks of gene-gene
interactions, and relationships to other biological
and behavioral traits. Visualization of these results,
comparisons to known pathways, and ultimately val-
idating new findings are at the forefront of array
analysis today.

Fig. 5 Genetic correlations of GABA-A receptor alpha 1 sub-
unit expression and Top) Log latency to find a hidden plat-
form in the Morris water maze, Bottom) Homer1 the
Neuronal transcription factor expression in BXD RI strains.

Many approaches to network analysis are also in
development. Bayesian network analysis allows
inference of gene expression networks from expres-
sion data and other causal factors. Relevance net-
works formed from associations of gene expression
levels within chips can also be identified. Genetic
correlations of gene expression can be used to find
genes that share common regulation. Reverse engi-
neering of transcription regulatory networks has also
been performed from time series array experiments.
A major issue in the development of network mod-
els is the determination of the flow of causality.
Perturbations of the network either naturalistically
via genetic approaches, time changes, or other
manipulations are experimental approaches that can
be used to determine the direction of gene-gene rela-
tionships.

GenMAPP (Discussed by Dr. Miles) allows users to
overlay their expression data onto known biological
pathways, and users are encouraged to submit their
own network and pathway data (15). This tool is
available at www.GenMAPP. org, and can now be
integrated with Gene Ontology annotations using
the tool MAPPFinder (16). The quality of these

analyses depends on the annotation of existing
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genomic databases. Earlier notions of pathways are
also bit unsophisticated. For example, in considering
neurotransmission, the classical view of a few syn-
thesis enzymes, possibly some vesicle proteins, recep-
tors, and re-uptake pumps must now be expanded to
include the entire cytoskeleton, anchoring proteins,
motor proteins, post-translational modifiers of all of
the aforementioned gene products, etc.

Text mining allows the incorporation of expression
data with known biology, giving new meaning and
interpretability to array experiments. First genera-
tion literature mining such as PubGene, publicly
available at www.pubgene.org, constructs networks
for co-occurrence of gene names in Medline
abstracts (17). While several good text-mining
approaches are being developed, the literature is
confounded with many gene symbols used to refer to
different gene products. This is especially true of
gene products named by size, and short gene names.
Text mining efforts are now aimed at discovering
relationships between sets of literatures, for example,
http://arrowsmith.psych.uic.edu/arrowsmith_
uic/index.html (discussed by Dr. Smalheiser). Newer
approaches to these types of analysis use latent
semantic indexing to discover hidden relationships
between genes. For example if gene A is frequently
reported to be associated with gene B, and gene C is
also frequently associated with gene B, then an asso-
ciation between genes A and C can be inferred. An
example of this can be found at http://shad.cs.utk.
edufsgo (18). Relational text mining is another
promising approach, which detects not only the co-
occurrence of terms, but also parses text to find the
direction of the relationship between them (for exam-
ple, determining that gene A upregulates gene B).
Most of these analyses are still largely prototypical.

Sequence mining analyses are used to identify shared
motifs in the regulatory regions of genes that cluster
together. Upstream sequences of a set of genes can be
retrieved and sent to MEME for comparison MEME
(http://meme.sdsc.edu/meme/website/meme-intro.
html) (19). QTL analysis (or a search of www.webqtl.
org) can be used to determine whether co-expressed
genes share a common regulatory region. These
approaches can provide the needed structure to limit
the computational demands of network analyses, by
reducing the need to test the relationships between all

possible genes.
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VIIl. Data Management

Microarray data analysis and other high throughput
biological techniques have resulted in an explosion
of data. Managing the modern biology laboratory is a
task that goes beyond the lab notebook and even the
large spreadsheets that we are becoming accustomed.
Relational databases, ranging from user-friendly vari-
eties such as FilemakerPro or Microsoft Access to
Oracle or open source relational software such as
MySQL or PostgreSQL, are becoming essential for
data sharing and collaboration within and between
labs (see the SfN 2002 Short Course Syllabus at
www.nervenet.org). These are also powerful tools for
assembling data for analysis across experiments. An
effective relational database can be used to track
array experiments from the birth of the organism to
the collection of tissues, sample processing, and data
analysis. The push for common data formats for
deposit and publication has led to the creation of
standards for preparation and annotation of data.

The Minimal Information About a Microarray
Experiment (MIAME) document created by the
Microarray Gene Expression (MGED) outlines the
information required (20). Gene expression indexes
should be reported with reliability information for
these measurements, information on the probe
sequences on the arrays and information on the target
samples hybridized to the arrays. Note that with com-
mercial arrays, much of this information is already
well-compiled. Fully electronic record keeping will
facilitate the incorporation of analysis results, raw
array data, and sample information with other array
information. MAGE-ML is the MicroArray Gene
Expression Markup Language and is based on XML.
The language is intended to facilitate the process of
sharing and communicating microarray expression
data. The full MAGE-ML specification is located at
http://cgi.omg.org/cgi-bin/doclifesci/01-11-02. User-
friendly tools for the laboratory scientist to actually
create. MAGE-ML documents are under develop-
ment.
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IX. Recommended Books

This chapter was intended to highlight some of the
major issues in microarray analysis. Each of these
topics is an area of active development, and more
extensive treatment of the issues raised here is nec-
essary. There is a wealth of new books about
microarray analysis, ranging from simple to quantita-
tively complex. These books are a few recommenda-
tions, and are not based on a comprehensive evalua-
tion of those available.

a. Getting Started

A Biologists Guide to the Analysis of DNA Microarray
Data. Steen Knudsen. (2002) This book is inexpen-
sive and gives a highly readable introduction to
microarray analysis. Slender on quantitative detail,
this book outlines a wide breadth of topics in a high-
ly accessible form. Great foothold for the novice
with limited statistical expertise. John Wiley and
Sons.

Microarrays for the Neurosciences: An Essential Guide
Daniel Geschwind and Jeffery Gregg, Eds. (2002)
Weritten by an SFN short course instructor, this book
is specifically geared toward the Neurosciences, with
treatment of advanced topics and field relevant
examples. MIT Press.

b. Thorough Treatment

Statistical Analysis of Gene Expression Microarray
Data. Terry Speed, Ed. (2003) This text is much
more detailed, and highly applied. It covers normal-
ization, experimental design, group comparisons and
classification algorithms, presented clearly with a

good measure of statistical detail while maintaining
readability. Chapman and Hall/CRC.

DNA Microarrays and Gene Expression From
Experiments to Data Analysis and Modeling (2002).
Pierre Baldi and G. Wesley Hatfield. This book is
heavier on biological and statistical theory than the
others, however it retains practical focus with soft-
ware reviews, and discussion of algorithms.
Cambridge University Press.

X. Free Software

Much of the freely available software for microarray
analysis is versatile, user-friendly, well documented,
and generally well understood by research communi-
ty. Other ‘black-box’ analytic tools may be costly,
and have a much smaller community of experienced
users. These tools may use ad hoc procedures and
computational heuristics that are not well known. A
few of the popular free softwares are listed below.

a. dChip

This software for Affymetrix arrays performs Model
Based Expression Index normalization (21), group
comparisons by several methods, clustering, integra-
tion of data with gene ontology, and has great graphi-
cal capabilities (Fig 5). Perfect match or whole probe
set data can be analyzed. The software can be obtained
at www.biostat.harvard.edu/complab/ dchip/dchip.exe

b. Bioconductor

The R statistical language is a GNU licensed, open
source version of the S statistical language, and can be
obtained at http://www.r-project.org. Users contribute
packages to perform basic statistical functions that are
available at the R archive www.cran.r.project.org.
Specific packages for biological data are available at
http://www.bioconductor.org, which is features open
source/open development software for genomic data
analysis and integration with other biological infor-
mation. Note that the most recent versions of pack-
ages and fullest documentation are often obtained
directly from the authors’ Web sites. The marray
group of packages and Affy package are two popular
microarray analysis tools for cDNA and Affymetrix
Arrays respectively, and other related packages can be
used to annotate, and filter results via analysis with
respect to other databases. These are programmable
and can be readily modified and incorporated by
sophisticated users into data pipelines through other
scripting languages.

c. Cluster & Tree View

These are widely used softwares developed by Eisen
et al (1998) for cluster analysis. Tree View is used to
visualize the output of Cluster. Both are available at:
http://rana.lbl.gov/EisenSoftware.htm

d. ClusFavor

(Gene Expression Cluster and Factor Analysis using
Varimax Orthogonal Rotation) is an easy to use and
well-documented package for performing clustering
and principal components analysis on large datasets.
[t is particularly oriented toward microarray data, but
can be used for clustering of other massive data sets.

© 2003 Chesler
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