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This chapter covers two topics: 

First, I would like to introduce (or reintroduce) you
to some of the key features of maps of the mouse
and human genomes. These maps have become an
important structural substrate around which many
types of biological information is now being
assembled. Those of you who have linked recently
to the NCBI, ENSEMBL, and USCS Genome
Browser sites for human and mouse genomes will
have encountered the complex graphic conventions
and acronyms that are used to display different types
of genetic information. The progress in the last year
has been astonishing and will have an impact on
research that is carried out in most laboratories that
have a molecular or genetic research angle.

My second aim is to summarize some of the basic
informatics and computational tools and tricks used
to manage large and small data sets. The scale of
this work can range from a modest stereological
analysis of cell populations in a few dozen cases, to
large microarray databases, through to huge image
data sets (see the chapters by P. Thompson and M.
Martone). Most of us now use spreadsheets such as
Excel in some capacity to manage lab data. I hope to
show you a few useful tricks for managing large
Excel spreadsheets. But I mainly hope to
convince/encourage you that it is easy and
worthwhile to extend beyond disjointed sets of
Excel spreadsheets and to become comfortable,
even proficient, using a simple relational database
such as FileMaker or Microsoft Access. Over the
past few years our group has become completely
dependent on relational databases. Databases have
replaced notebooks and spreadsheets for most lab
work and even for some primary data analysis. The
improvement in lab data handling has been amazing
and initially unrelated files and data set can often be
easily merged. Best of all, our lab data are now
accessible using an Internet connection from any
computer in the lab or across the world. Internet
databases are obviously far easier to replicate,
archive, and distribute than raw data stuck in a
notebook.

INTRODUCTION
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Maps come in two major flavors: physical and
genetic. Physical is an odd word in this context, but
signifies that the map is based on sequence data and
on an assemblage of YACs, BACs, and other
clonable pieces of chromosomes that have been
ordered into a contiguous stretch of DNA,
preferably without any interruptions or
ambiguities. The NCBI site at
w w w. n c b i . n l m . n i h . g o v / g e n o m e / s e q /
NCBIContigInfo.html has a fine description about
how the mouse physical maps (genome sequence)
are being assembled. Quality of these physical maps
is now vastly improved over the situation even one
year ago and the progress will continue for several
more years. 

The unit of measure of a physical map is generally
a base pair or nucleotide (bp or nt). In humans, by
convention the 0 bp position is at the telomeric tip
of the short P arm of each chromosome (usually
illustrated at the tops of most figures) and the end is
at the tip of the long Q arm. Murine chromosomes
have extremely short P arms (all chromosomes are
acrocentric), and the 0 bp position is within a few
megabases (Mb) of the centromere. A typical
chromosome in human or mouse is between 60 and
200 Mb long. 

The great majority of genes have now been
physically mapped in several key species (although
sometimes they go unrecognized for a while), and
the phrase gene mapping is beginning to loose its
original meaning. The focus now is turning away
from mapping genes to mapping phenotypes across
sets of chromosomes and genes. By mapping a
phenotype, I actually mean finding the set of
polymorphic genes (genes with multiple alleles)
that modulate some trait, for instance numbers of
tyrosine hydroxlyase-positive neurons in the
substantia nigra or risk of developing Alzheimer
disease. I’ll come back to this topic.

In contrast, genetic maps are based on a somewhat
more abstract analysis of the frequency of
recombination events that occur during meiosis

along paired-up sister chromosomes. The greater
the distance in base pairs or centimorgans between
two points of a single chromosome, the more likely
that a recombination will occur between those two
points to break up the original arrangement of
genes on the parental chromosome. That original
order is called the parental haplotype and the order
of the recombination is called the recombinant
haplotype.

Until a few years ago, all genetic maps were
constructed by computing the frequency of
recombination between genes and markers on
chromosomes. The use of the term genetic in this
context seems inappropriate or superfluous, but the
idea was to minimize confusion: genetic maps are
sometimes referred to as meiotic maps, linkage
maps, recombination maps, or haplotype maps (that
really helps to minimize confusion!), and the
standard unit of measure of a genetic map is the
centimorgan (cM, defined below). 

Chromosomes usually measure from 50 to 300 cM.
The frequency of recombination is variable and
depends on the chromosome, the species or strains,
and the sex. Genetic maps are elastic. Genes and
markers on genetic maps have the same order, but
distances vary among experiments and populations.
A useful metaphor: Genetic maps are similar to
maps that measure the separation between cities in
terms of the standard driving times required to get
from one to another. Those times will be very
contingent. In contrast, a physical map is structural
and not subject to much change.

Let’s look at the type of maps that are now available
on line at NCBI. Reading from the left side of this
figure 2, we first see a cytogenetic ideogram of the
smallest of the mice chromosomes, Chr 19. The
Zoom is at its lowest setting and the lines and
columns to the right side cover most of Chr 19. The
left-most line is the approximate distance in millions
of base pairs (M in the figure) from the tip of the
chromosome; the right-most line is the genetic map
measured in centimorgans. Again, there is no single

TOPIC 1: PHYSICAL AND GENETIC MAPS
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genetic map, but many alternatives, and the
alternative that is displayed by NCBI is the Mouse
Genome Informatics group’s consensus map. There
are lots of acronyms of these and other maps (FPC
for finger print clone), and you can find out what
each line or trace means by clicking on the column
headers.

Will genetic maps fade out into the history of
science as physical maps get better and better?
Absolutely not. The simple reason is that when we
try to discover the genetic basis of differences in
phenotype, we almost invariable rely on
recombination events to test the likelihood that a

sequence variant is associated with a variant
phenotype. (Cytogenetic abnormalities are an
important exception.) Most of the discoveries of
genes and gene polymorphisms (alleles)
associated with diseases rely on probabilistic
recombination events—either the historical
recombinations between populations or the
more recent recombination that are unique to
large and small families. Even if we could snap
our fingers and sequence the entire genome of
every one on earth, we would still end up
tracking the sites of recombinations and their
relations with variation in phenotypes. 

Box 1: Markers, SNPs, Microsatellites, QTLs, etc.
In dealing with maps of various types you will need to know how some key vocabulary is used by
most geneticists: What is a marker, a microsatellite, a SNP, a polygene, a locus, and QTL? A marker
is often a non-functional but poly-morphic stretch of DNA, for example a short micro-satellites or a
single nucleotide polymorphisms (a SNP). Microsatellites (a term that derives from hybridization
characteristics) is highly repetitive DNA sequence that tends to be highly polymorphic because
polymerase has a very hard time replicating this boring DNA accurately. For example the sequence
CAGCAGCAGCAGCAG. CAG is a tri-nucleotide microsatellite repeat that in the right reading frame
will translate into a string of glutamine residues. If a micro-satellite is in an exon, and if the number
of repeats is abnormally large, then bad things can happen to neurons: Huntington disease is an
extreme example. Markers, whether SNPs or microsatellites, will always be useful for efficiently
screening the structure of genomes and the inheritance of blocks of DNA and blocks of genes.
Markers that happen to be within genes, such as the key microsatellite in the huntingtin gene are of
course inter-esting in their own right, especially when they correspond to resistance or susceptibility
to a disease. 

A polygene is an odd term that refers to the set of polymorphic genes that collectively control the
variation in a trait. For example, the BRCA1 and BRCA2 genes are part of a cancer susceptibility
polygene. Usually, we do not know the membership of a polygene; we just know that a small or large
number of scattered genes modulate some trait. Finally, what is a locus? This is a term used to hedge
bets. We would like to call everything a gene, but many times we only know the approximate
chromosomal position that appears to contain factors that modulate variation in a trait. This
chromosomal region may contain a single causative gene or it may contain a cluster of genes that
collectively modulate a trait. The safe term is locus. A QTL is a so-called quantitative trait locus. That
translates as follows: a chromosomal region that harbors one or more polymorphic genes that
influence the variation in a trait in a graded (quantitative) manner. QTLs are relatives of the modifier
loci that one sometimes hears about in the context of major disease genes and knockouts. A modifier
locus is usually a QTL that modulates the severity of a phenotype.
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Almost any sequence of nucleotides from
Drosophila, C. elegans, human, and mouse can now
be physically mapped using BLAT or BLAST to the
nearest base pair in a matter of seconds (see
Effective Mining of Information in Sequence
Databases, by David Deitcher in this Short Course).
Jim Kent’s BLAT program illustrated below is a
remarkable web tool that works well for mouse and
human sequence. Paste any nucleotide or peptide
sequence into BLAT at genome.ucsc.edu/cgi-
bin/hgGateway?db=hg12 and within 1–2 seconds
you will be rewarded with a list of hits. This new
resource made it possible in collaboration with John
Hogenesch and colleagues at the Genome Institute
of the Novartis Foundation, to locate the base pair
position of almost all the GenBank entries used to
make the Affymetrix U74Av2 GeneChip (Fig. 5). 
If you simply need to explore a genome location to
view sequence, intron-exon structure, fish out
promoter motifs, then just enter a key word and the
BLAT search will deliver you to a particular part of
the genome. In the figure below, I entered a search
for HOXB8. Then zoomed-out to get a view of the
entire human HOXB complex on Chr 17q21.32. If
you visit this impressive web site you can get
complete descriptions of the various traces that are
essentially graphical annotations and summaries of
the human and mouse genomes. You can zoom into
the level of the nucleotide sequence.

Mapping phenotypes is a much more difficult task
these days than locating an arbitrary gene sequence.
When we talk about mapping a gene that influences
circadian rhythm, neuron number, anxiety,
susceptibility to Parkinson disease, alcoholism, or
schizophrenia, we are really talking about matching
differences in structure or function to one or more
chromosomal regions; so-called gene loci (see BOX
1). We would love to map genes for Parkinson
disease, but what that usually means is that we
would like to identify statistically significant
association between variability in susceptibility to
Parkinson disease with a genetic polymorphism
(variation) that may be distributed widely across the
genome. In other words, we are mapping a
phenotype to multiple regions of the genome. This
is the crux of forward genetics. If the process of
mapping these traits intrigues you, then link to a
previous Short Course tutorial on forward genetic
methods at
www.nervenet.org/papers/shortsourse98.html.
This Short Course contains much additional
information on procedures for mapping traits and
genes.

Chromosome maps have a complex and
heterogeneous structure. This is visible at the
cytogenetic level as differences in banding patterns
and at a finer grain as large fluctuations in mean
gene density. The haphazard way in which
chromosomes differ between even fairly closely
related species demonstrates abundant
chromosomal plasticity. However, gene location,
order, and orientation can also be important as
highlighted by the conservation of the HOXB gene
families illustrated in figure 2 from the extremely
useful Genome Brower web site at the University of
California Santa Cruz. 

MAPPING GENES MAPPING BRAIN AND BEHAVIORAL TRAITS
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FIGURE 1

Physical and genetic maps of mouse chromosome 19 from the National Center for Bioinformatics. This

figure can be expanded to reveal fine details and sequence from almost any region. 
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Bioinformatics is closely associated with genomics
and the analysis of sequence data and maps (see Box
2), but in this section I would like to broaden that
definition to include handling information that is
typically generated and processed in laboratories
every day. In the biotech and pharmaceutical
industry work of this type is handled by a LIM
system (a laboratory information management
system). This type of everyday “bioinformatics”
often  starts with simple decisions about unique case
Ids and identifiers to be used in experiments,
extends through to the organization, use, and
security of lab notebooks, and often ends with the
extraction, analysis and archiving of data and
experiments with spreadsheets and statistical
programs. Most of this type of information
handling is taken for granted and many of us (and
especially our mentors) assume that there is not
much room for modification or improvement in the
daily cycle of data generation, analysis, and
publication. 

In fact, the efficiency and sophistication of the day-
to-day aspects of data acquisition and handling can
be substantially improved. It is becoming more
important to have a lab database and a web site for
more that just a curriculum vitae and a set of pdf
files. Lab web sites are becoming one of the most
effective ways to communicate results.
www.nervenet.org provides a good example of how
our lab publishes data on-line. 

In this section I will make some suggestions about
how to move in the direction of using relational
databases to improve lab informatics. The expense
of entering this new sphere is modest and the gain
in scientific efficiency can be substantial.  Best of all,
these new tools make collaborative research across
cities and continents much more practical.

TOPIC 2: EXCEL AND RELATIONAL DATABASES
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FIGURE 2

Detailed view of the human HOXB complex on chromosome 17 taken from the University of California

Santa Cruz Genome Browser. 
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Exposure to practical lab bioinformatics often starts
with Excel. Excel has become a pervasive (almost
obligatory) vehicle for data email exchange. It is also
a very powerful tool for analysis. Not many of us
have read or reread the Excel manual: we usually
learn on the fly. Let me summarize some of the key
features:

1. File size. Excel has a limit of 65,536 rows and 256
columns. That is usually not a problem. Our lab still
uses Excel for some aspects of microarray analysis.
You can easily pack 12,500 rows and 240 columns
worth of data into an Excel file and you can have
multiple spreadsheets in a single file. We have
several Excel files that are about 120 MB in size, and
the program runs reliably if given 300 MB of
memory. However, for all but the smallest projects,
it is not a good idea to store data files long term in
Excel. You will hear more about this in the next
section. In brief, Excel is for analysis—not for
archiving and databasing. Running up against the
table size limits of Excel is not hard these days. If
you begin to work with even a single Affymetrix
GeneChip at the cell level (about 500,000 cells/chip)
then you will have to use another software tool
(SAS, Systat, SPSS, S-Plus, Matlab, DataDesk,
FileMaker, MySQL, PosgreSQL, etc). More on this
later in the section on Relational Databases.

2. Transposing data. It is easy to transpose a data
set in Excel (that is, switch rows to columns and
columns to rows). Select the region of interest and
copy it. Then select the upper left cell of the
destination for the transposed data and use the Paste
Special command. There is a check box labeled
“transpose.”  Paste Special is a very useful feature
that we use extensively to convert equations to
values. This can reduce RAM requirements and
speed execution. Keep equations if you need them
permanently for updating. But if you just want the
values, convert equations to values using Paste
Special. You can also transpose values and leave
formats alone.

3. Merging complex tables that share a unique field

is easy to do in Excel. Let’s say you have an Excel
table consisting of 6,000 gene transcripts expressed
in the caudate nucleus. You have another list of
12,000 gene transcripts with data on neocortex
expression sent to you by a colleague. You want to
extract the neocortical values and align them with
the set of 6000 caudate transcript values. The
problem is that the tables do not overlap perfectly.
The solution is simple. If the two tables share a
common field type, for example an Affymetrix ID
number or a GenBank accession number, you are in
business. Just use the vertical lookup command as
shown in Fig. 3. Excel will help explain the use, but
here is my version of help: open both files, then add
a new column in the Caudate Table labeled
Neocortex. Type in a variant of the equation that is
listed toward the top of the next figure. These
equations have the form: 

=VLOOKUP(CellID, LookupTable, Offset, FALSE)

The CellID (A2 in the example below) is the
spreadsheet cell that contains the unique ID that
both tables share (the Probe set ID 92996_at in this
example). The Neocortex table is just a region that
will be interrogated by Excel to find the single
matching row in the Neocortex table (row 2773 in
the figure); the Offset is an integer that instructs
Excel to copy data from the Nth column to the right
of the ID column. In this case, the offset is 3. FALSE
is a flag that instructs Excel to use only perfect
matches. Make sure that this equation works for the
first few cells in your new column and then copy the
formula down the whole column. You may need to
put dollar signs in front of some cell references to
lock the reference in place so that the definition of
the table does not change as you copy down the
column.

4. Excel as a statistical analysis program. Simple
statistics (mean, median, average, errors) can be
computed quickly for thousands of rows or
columns of data in Excel. This is an ideal use of
Excel. It is also possible to perform tens of
thousands of t tests in Excel in less than a minute. If

EXCEL: USES AND ABUSES
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FIGURE 3

Using lookup functions in Excel to exchange selected data from between files. Details of this method

are described in the text. Note the equation at the top of this figure. This equation places new data

from the Neocortex database (left side) into the Neocortex column of the Caudate database (right side)
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you have ten arrays worth of data (5 wildtype and 5
knockout array data sets), then you can perform a
quick t test for every transcript using the formula:

=TTEST(WT1:WT5; KO1:KO5, 2, 3)

WT1:WT5 is the range of the wildtype data in a
single row (five columns worth of values. KO1:KO5
is the same thing for knockout samples. The
parameter 2 instructs Excel to compute the 2-tailed
probability. The final parameter 3 instructs Excel to
assume that the variance of the two groups is not
equal.  Excel will return the probability of the t test
rather than the t value. If you have done any array
work you will already be familiar with the multiple
tests problem (see the chapter in this Short Course
by Dan Geschwind and colleagues). An array
consisting of 10,000 transcripts should generate
about 500 false positive results with alpha
probabilities of less than 0.05; 100 with P <.01; and
10 with a P <.001, etc. If you plot the P values
against their rank order (rank on the x axis from
lowest to highest P values, and the actual P value or
log of the P value on the Y axis), then you will end
up with an interesting plot that can be helpful to
estimate how many false discoveries you are making
at any given P value. (For more on the Benjamini
and Hochberg method of false discovery rates see
www.math.tau.ac.il/~roee/index.htm).

It is not a good idea to use Excel in place of
sophisticated statistics programs. If you are gearing
up for regression analysis, ANOVA, non-parametric
statistics, factor analysis, principal component
analysis, then buy one of the many good statistics
packages. SAS, SPSS, StatView, Matlab, and
DataDesk are powerful tools. DataDesk in
particular is an amazing program that makes
working with very large data sets more like a game
than a chore. We routinely review all of our array
data with DataDesk and use this program to
generate draft figures for papers. If you buy this
inexpensive program be sure to work through the
excellent manual. Ample rewards.

5. Excel to normalize array data sets. This is a
good use for Excel. Excel can compute rank orders:
=RANK(TEST_CELL, ALL_CELLS); compute the
logarithm base 2: =LOG(VALUE, 2); and compute
the Z-score for a cell:
=STANDARIZE(VALUE,AVERAGE, STDEV). In
many of these formulas you will need to lock one
cell reference so that values do not change when
you copy or fill. Use the dollar sign to lock a
reference in a formula, for example if the cell that
contains the average is C12450, then enter it as
C$12450.  If you copy down the column then the
reference to the average will not change. If you copy
to the right however, then the reference may change
to D$12450, since the column letter was not locked.
To lock both use the format $C$12450.

6. Using Excel as a database program. Don’t
bother. Excel is great, but it is definitely not a
database program. If you have played with the
database functions that are built into Excel then you
have all of the experience and motivation that you
need to graduate to one of several much better,
more powerful, and easier to use database
programs. FileMaker Pro and Access are programs
with which you can get comfortable in a few days.
Read the next section for details on the migration to
relational databases.
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FIGURE 4

Internet access to over 50 laboratory databases hosted on an inexpensive but robust lab computer: a

Macintosh G4 running OS X and FileMaker server. The top panel is a partal listing of some of the

related databases, including CageDB (animal colony), CelloidinDB (histology), EyeDB (eye

phenotypes), DNADB (sample preparation), F2DB (genotypes), etc. 



© 2002 Robert W. Williams

Bioinformatics 2002102

We often do a great job handling the hard problems
in neuroscience and bioinformatics but often
neglect to take care of the simple housekeeping.
This imbalance can lead to serious problems.
Imagine a sophisticated research lab performing
hundreds of microarray experiments and
generating and processing megabytes of data every
day. Such a lab will  almost invariably have expensive
bioinformatics tools (GeneSpring, SpotFire, etc.)
and computer systems for handling array data. But
the same lab may not have a simple database to
track the large number of tissue and RNA samples
that are stored in several freezers. In order to
confirm the sex and age of all of the cases in the
array data base they may have to rummage through
a set of lab note books and Excel spreadsheets. To
determine the size of the litter to which a particular
animal belonged may involve the laborious analysis
of animal cage cards kept in a shoebox in the animal
colony. It may not be practical to determine even
after an interval of a few months which of several
investigators, students, or technicians extracted the
RNA; did they use Trizol or RNAStat? 

These examples highlight a problem in the typical
application of bioinformatics. We tend to think of
bioinformatics as high level analysis that is applied at
the final stages of preparing papers for publication.
The bioinformatic tools enter ex machina to the
rescue. Most of us run microarrays and then learn
how to apply sophisticated statistical methods to
parse and interpret patterns of gene expression
change. Bioinformatics should actually be built into
a laboratory from the ground up. Data should
ideally flow from one stage and level to the next
without the need to transcribe or reformat. Below is
one example that describes how to accomplish this
transformation in your laboratory information
management.

In 1994 we began a series of experiments with the aim
of estimating the population of retinal ganglion cell
axons in the optic nerves of several hundred (now over
a thousand) mice. For each optic nerve we typically
counted 25 electron micrographs and entered the
counts per micrographs and per case in a single row of
an Excel spreadsheet. We calculated means and
standard errors for each nerve and row of data. There
seems to be no significant downside to this simple
system. 

There were a few minor problems that in aggregate
became serious and that illustrated the inadequacy of
using Excel as a research database. How does one
handle right and left optic nerves when both sides are
counted? That seems simple; just enter the two sides in
separate rows. The consequence is that some animals
were represented on two rows, whereas the majority
are represented on one row.
A second problem was that every time we added data
for a particular strain we had to rewrite some of the
Excel formulas used to compute strain averages.  It
became awkward to maintain both individual data and
strain averages in a single spreadsheet.

A third problem was keeping track of the latest version
of the spreadsheet. As many as three investigators were
working on the spreadsheet each day, and it was
difficult to track versions and to make sure that
information was accumulated and collated correctly.
This was a pain to do especially after the Excel file grew
to a large size.
A fourth problem involved the integration of other
data types into the spreadsheet. When we were writing
up our results it became obvious that we would need to
consider variables such as brain weight, age, sex, body
weight, and litter size as potential modulators of retinal
ganglion cell axon number. Unfortunately, these data
types were scattered in several other databases. We
diligently transcribed data from cage cards and other
small Excel databases and lab notebooks into our optic
nerve spreadsheet. This transcription was associated
with the introduction of many transcription errors and
every new case that we added required us to transcribe
data from 2–4 other notebooks. 

MOVING BEYOND EXCEL: RELATIONAL DATABASES

A BIOINFORMATIC IMBALANCE THE LIMITS OF SPREADSHEETS
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The solution was obvious but seemed both risky
and impractical: convert our entire laboratory to a
relational database management system and begin
to enter and reenter all data into a set of
interconnected database files or tables. The idea was

to eliminate laboratory notebooks and spreadsheets
as much as possible. The process began in the
animal colony and extended through to post
publication databases that are now on-line. 

THE SOLUTION

Box 2: Good reading  and reference

Biological sequence analysis: probabilistic models of proteins and nucleic acids (1998) by R
Durbin, SR Eddy, A Krogh, G. Mitchison. $35. The standard text on sequence analysis; the core
topic of bioinformatics. You can take a tour of the first 23 pages of this book at Amazon.com.

Bioinformatics, a practical guide to the analysis of genes and proteins 2nd ed. (2001) edited by
AD Baxevanis, BF Francis Ouellette. $70. Provides an overview of common resources and an
introduction to Perl. The main drawback is that practical web-based bioinformatics is moving so
quickly that revisions are needed quarterly. A careful reading of NCBI on-line documentation will
cover much of the same ground. But if you need hardcopy for bedtime reading...

Bioinformatics, the machine learning approach 2nd ed. (2001) by P Baldi, S Brunak. $50. A more
conceptual companion to the Practical Guide. Most of the Amazon.com reviews are favorable, but
I have to agree that the coverage of topics I know best (array analysis) is of uneven quality. Chapter
13 includes an armada of web resources for molecular bioinformatics that is still useful.

Biometry, 3rd ed. (2001) by RR Sokal, FJ Rohlf. $96. This is one of the best first courses you can take
in statistics. Full of fine examples. Were you aware that the standard deviation is a biased estimate
and is usually too low (p. 53)? This book does not have statistical tables.

Data reduction and error analysis for the physical sciences. 2nd ed. (1992) by PR Bevington, DK
Robinson. $50. Predates bioinformatics but if you want an absolutely lucid presentation of the
foundations of data analysis with lots of practical advice and code snippets this is the right Short
Course. Includes some of the statistical tables missing from Biometry.

Applied Multivariate Statistical Analysis, 5th ed. (1998) RA Johnson, DW Wichern. $105. This
volume is a classic but rigorous coverage (“more equation than words”) that covers the mind-
bending world of multivariate analysis. SK Kachigan wrote a much more accessible and shorter
text: ($30, Multivariate Statistical Analysis: A Conceptual Introduction). LG Grimm and R Yarnold
assembled a collection of solid and accessible chapters in Reading and Understanding Multivariate
Statistics ($21) that gets strong reviews on Amazon.

Fundamentals of database systems 3rd ed. (200) by R Elmasri, SB Navathe. $70. A thorough
textbook that will introduce you to the theory and practice of implementing database systems..
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The key feature of a relational database is that it
consists of an often large number of small tables of
data that are linked using key ID fields (for example
the Probe_set_ID field in the previous example).
Instead of trying to cram all data types into a single
unwieldy table (the Excel model), the idea is to
parse data into more manageable and logical pieces.
The structure or scheme of a whole lab database
system is then defined in large part by how
information flows between and among the various
tables. In the context of an animal colony, rather
than having a single complex ColonyDB table, it is
related tables: CageDB, a RackDB, an AnimalDB,
more effective to break up the data types into four
smaller  LitterDB. These four tables would all be
linked by relations and key fields. For example, each
cage in the CageDB has a Rack_ID. The relation
provides a conduit for information flow and display.
A very important idea in relational databases design
is to minimize redundant data among the related
tables.  Ideally, all data only are entered into the
single most appropriate table. You do not want to
have to enter the sex and age of an animal more
than once. A perhaps counterintuitive example:
birth data would typically be entered into the
LitterDB, not the AnimalDB. The AnimalDB would
inherit the date of birth data by following the
relational trail between a specific animal and the
litter to which it belongs. Minimizing data
redundancy actually improves the data integrity of
the system. You won’t end up with animals that
have two or more different dates of birth. 

The organization of your database and how you
view and work with the data are two separate
issues. Don’t confuse the underlying database
structure with the database interface. For example,
the form illustrated in Fig 5, actually displays data
from four different tables and makes use of relations
that rely on the Probe Set ID, the Gene Symbol, the
Locus Link ID, and the GenBank accession number.
The layout of the form can be changed in a matter
of seconds to simplify data entry or viewing. Once
the right relations have been made it is also simple
to compute new values and new field types based

on data in a multitude of different tables. You can
export and print data from any and all of the tables,
and you can compute new data types across the
tables. 

WHAT IS A RELATION?
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FIGURE 5

Example of a one-to-many relation being used to track and analyze microarray data. The primary

database table contains 12,422 records, each of which corresponds to a unique Probe Set ID (94733_at

in this case). Each probe set, in turn, relates to 16 perfect matches held as individual records in a second

lower-level database table-- the Probe Sequences that are shown in the lower panel.  Selecting the Link

to Ensembl button (right side) opens a window on the www.Ensembl.org mouse sequence web site.

Apparently complex databases of this type are simple to make using FileMaker.
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Choosing a database is a important issue since you
will probably have to live with, manage, and pay for
occasional upgrades of software for a long time.
The choice is not irrevocable, but migrating from
one database to another can take months. Even a
“simple” upgrade can take weeks.

We considered and experimented with a few
alternative relational database programs, including
Microsoft’s Access, FileMaker Pro, Helix, Acius’s
4D, and Panorama.  FileMaker was our final choice
because of the ease of implementing complex and
visually self-explanatory tables and relations. It lacks
many sophisticated features expected on enterprise
products like Oracle 9, but that is not what we
needed. FileMaker now has strong support for
Macintosh, Windows, and Linux platforms.
Upgrades have kept pace with technology without
sacrificing ease of implementation. The interface
with Excel is also smooth, making FileMaker an
easy upgrade to a relational database system. 

We have compared the efficiency of implementing
database systems in FileMaker and a free and
powerful relational database called MySQL (Fig. 6).
The Mouse Brain Library (www.mbl.org) was
originally implemented as a FileMaker database in
just under two weeks by a high school senior with
strong programming skills. This web-accessible
database has performed admirably for several years
with almost no unintentional downtime and now
accommodates a wide variety of images for
approximately 3000 histological slides and over 200
strains of mice. The Internet interface was not
difficult to implement in FileMaker and allows rapid
searches by genotype for acquisition of images. 

Once we had built and full tested the FileMaker
version we then decided to replicate the entire
system using a free and powerful relational database
called MySQL on a Linux platform. This free
implementation took a skilled database
programmer just over 3 months. That is not atypical
for MySQL. However, replicating the MySQL
implementation from one site to another site took
less than a week. The moral is that if you want to
maximize efficiency of time and ease of
implementation then use a database system that has
a strong and logical interface and high-level
graphical interface tools. In contrast, if you want to
provide a free system for use by a broader
community then either convert to MySQL or
PostgreSQL (both open source databases that run
on most major operating systems: see
www.mysql.com and www.us.postgresql.org). If
speed is a major consideration (lots of array files),
then MySQL is now a faster database management
system than PostgreSQL or FileMaker. For a cogent
comparison of these DBMS see
www.webtechniques.com/archives/2001/09/jepso
n/.

CHOOSING A DATABASE FILEMAKER VS. MYSQL
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FIGURE 6

Internet implementations of the Mouse Brain Library (www.mbl.org) using FileMaker or MySQL The

MBL in concert with the iScope, and a collection of C++ and CGI-like web interface programs deliver

images that range in resolution from whole slides (top), down to ~0.2 microns per pixel per slide. The

iScope is an Internet-driven microscope that can deliver Z-axis image stacks in color and at sizes up to

1280x960 pixels. These stacks are suitable for high-resolution on-line high-resolution stereology.
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There is a certain macho urge to use the most
robust heavy-iron commercial program you can get
your hands on as part of a laboratory database
system. Oracle, Sybase, and similar high-end
systems are intended primarily for mission-critical
24:7 activity (student records, payroll, etc.). Experts
on databases generally know these systems well,
and they genuinely think they are being  helpful by
recommending Oracle with its sophisticated
transactional processing. But Oracle and Sybase are
a mismatch for a typical laboratory. Research and
lab databases need to change on a weekly basis. The
layout of fields for data entry may change on a daily
basis. Local control, speed, and mobility are far
more important than processing speed or high level
feature sets. Don’t go hunting with a tank. You need
to know how to make changes to the structure of
your tables, in the layout of your entry forms, and
how to efficiently export data for downstream
statistical analysis. A strong point in favor of Excel is
its transparency, and you don’t want to lose that
advantage when moving to a relational database.
You need to retain full control of your own data. 

Backing up and making weekly permanent archives
are both critical. The difference between a backup
and an archive is that the backup is volatile on a
daily, weekly, or monthly basis and will be
overwritten at some point. In contrast, archives are
intended to be as permanent as possible. Even the
simple systems such as FileMaker Server Edition
will backup on any schedule you would like.
Archiving to CD or DVD at the end of the week is a
new obligation that needs to be taken seriously, but
that would be true no matter what system you use.

A PRECAUTION SECURITY
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FIGURE 7

Gene to protein synopsis taken from the Google image archive (source: Rockefeller Univ.)
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