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ABSTRACT 
 

A wealth of genotypic and phenotypic information about inbred strains of 

laboratory mice is being collected and assembled in large databases.  Sophisticated 

mining of this information can be useful in generation of hypotheses regarding the 

sources and nature of phenotypic variability, both environmental and genetic.  As 

genotypic databases become complete, computational methods for identification of the 

genetic loci associated with complex polygenic traits may be possible.  The common 

genetic origin of the inbred strains, and the genetic similarity of members of these strains 

make possible these approaches to the genetic study of pain and other complex 

phenotypes.  In the first study, the relative role of laboratory environmental factors and 

genetic factors in pain related phenotypes are explored in a large data archive containing 

over 8000 observations of a single pain related phenotype.  Classification and Regression 

Tree Analysis revealed that the experimenter was a more important factor than genotype 

and that other laboratory factors also influence studies of pain.  Linear modeling allowed 

parametric estimation of some of the effects, and results of the CART analysis were 

confirmed in a balanced prospective experiment.  In the second study, the possibility of 

detecting genetic loci contributing to trait variability through the use of databased genetic 

information and inbred strain phenotype studies is evaluated.  Two algorithms are 

considered, and compared to results from more commonly employed experimental 

crosses.  Statistical power issues and methods of controlling error-rates are evaluated for 

each method.  The use of permutation analysis for the empirical derivation of significance 

thresholds may enhance the performance of inbred strain based mapping, potentially 

making this theoretically interesting method viable for use in practice.  
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1.  Introduction:  Integrating Information From the Genome and the "Phenome" 

 
Recent advances in genomics have led to great optimism about the use of genetic 

methods to understand individual differences in disease susceptibility and other complex 

traits.  To this end, large-scale genotypic and phenotypic data collection efforts are 

underway, particularly in genetic models such as the laboratory mouse.  The genome of 

the mouse has been completely sequenced, and allelic variants of numerous genetic 

markers and even genes are being identified in massive genotyping efforts.  A variety of 

efforts are underway in the study of phenotypes, including large-scale mutagenesis 

projects in the mouse (e.g., Nolan, et al., 2000), and the mouse "phenomics" project 

(Paigen and Eppig, 2000), a collaborative effort to look at the genetic correlation of many 

phenotypes in a common set of inbred mice.  However, typical behavioral traits have 

broad-sense heritabilities under 50% (Plomin, 1990), implying that study of such traits 

would be incomplete without the consideration of the environment and gene-environment 

interaction influences on the traits.  Computational approaches that integrate information 

from large bio-informatics projects with the study of inbred strains can be employed to 

more completely characterize such complex traits, and thus to better realize gains made 

from using a genetic approach to study individual differences. 

To date, much work has been done on the study of the heritability of pain related 

phenotypes.  People display considerable individual differences in their sensitivity to pain 

and analgesia, and in their susceptibility to painful pathology (for review, see Mogil, 

1999).  Trait data exist for the most commonly employed inbred strains of laboratory 

mice and have been used to demonstrate the heritability of a large number of pain and 

analgesia related phenotypes (Mogil et al., 1999a).  Studies of genetic correlation 
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between these traits indicate that there are categories of pain phenotypes that may share a 

common genetic mediation (Mogil et al., 1999b) largely based on stimulus modality.  

Finally, linkage analysis has been performed on several pain related phenotypes.  

Mapping has been accomplished for a number of pain traits, including thermal and 

inflammatory nociceptive sensitivity, thermal nociception, morphine antinociception and 

stress-induced antinociception (Wilson et al., 2002; Mogil et al., 1997a; Mogil et al., 

1997b; Hain et al., 1999; Belknap et al., 1995, Bergeson et al., 2001).   

Numerous studies of environmental effects on pain related phenotypes have also 

been performed, but often not in relation to genetic effects, or in the context of the 

environment in which genetic studies are usually performed.  Because the genetic and 

environmental factors are rarely studied together, information on the interaction of the 

two is often unavailable for particular traits.  Genetic mapping studies, as presently 

performed, are too costly and time consuming to repeat under a wide variety of 

environmental conditions in common practice, particularly because most modern 

mapping techniques require the generation of large experimentally crossed populations 

and characterization of both the phenotypes and genotypes of these unique individuals.  

The unknown genotypes of the animals preclude any purposive grouping of individuals 

into gene by environment classes for testing purposes.  Furthermore, the relevant 

environmental factors worthy of manipulation have remained largely unknown.  Many 

environmental factors fluctuate within and between laboratories in which behavioral traits 

are studied, however, and have been shown to influence the magnitude and direction of 

genetic effects (Crabbe et al., 1999; Cabib et al., 2000).  Differences in environmental 

factors within a lab have even been implicated in failure to replicate selective breeding 
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based genetic mapping studies (Turri et al., 2001).  Genetic study that ignores 

environmental factors is incomplete and can be potentially misleading.   

Gene-environment interaction can be viewed as a "two-way street."   Some genes 

may play a conditional role in production of behavioral traits depending on the 

environmental context.  Furthermore, identifying genetic factors that underlie sensitivity 

to these environmental factors can allow us to understand how these factors influence 

behavioral traits.  In other words, some environments may cause differential involvement 

of some genes, and some genes may cause differential sensitivity to the environment.  

The study of gene-environment interaction can elucidate both of these phenomena.  

While mere identification of this interaction can not differentiate these two situations, the 

study of genetic loci associating with trait differences across different environments can 

identify genes whose actions are dependent on environmental factors, and studying the 

magnitude of environmental effects on a trait in genetically different mice can be used to 

detect genes that cause differential sensitivity to the environment.  The use of inbred 

strains can facilitate the latter because measurements can be made in different individuals 

with identical genotypes, thus eliminating problems of repeated testing in multiple 

environments and resulting carry-over effects.   

Several techniques are frequently employed to identify the specific genes that 

underlie a trait, primarily following two approaches.  One is to study the phenotypes of 

mutant strains of mice, with disrupted function of the gene in question, and the other is to 

use genotype-phenotype association to detect regions of the genome that contain genes 

that may influence the trait.  This latter technique, the detection of quantitative trait loci 

(QTLs), is extremely valuable to the study of behavioral traits because it can be 
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employed in the “normal” mouse.  This technique is not susceptible to some of the 

problems affecting the interpretation of mutant studies.  It can be used to study the effects 

of multiple genes simultaneously, and does not require any a priori assumptions about 

the potential role of a particular gene. 

Studying heritable traits in homozygous mice of known genotype can allow one to 

perform linkage analysis directly from phenotypic assessment of such mice, as has been 

done for recombinant inbred (RI) strains (Plomin et al., 1991).  As increasing genotypic 

information becomes available for common inbred strains these techniques appear even 

more promising (Grupe et al., 2001), although early attempts at such “in silico” mapping 

may be overly simplistic (Chesler et al., 2001; Darvasi et al., 2001).  These techniques 

employ genetically identical inbred strains, allowing data from many individuals can be 

combined for precise phenotypic study.  Different sets of genetically identical individuals 

can be exposed to different experimental conditions to allow for the study of compound 

measures involving separate control groups.  Because inbred mice are widely available, 

results from many studies can also be compared or combined for large-scale assessment 

of phenotypes.   

The intention of this work is to demonstrate the feasibility of studying the role of 

genetics, environment and gene by environment interaction in pain-related phenotypes 

using archived genotypic and phenotypic information, largely based on the study of 

inbred mice.  This was accomplished through the application and verification of data-

mining strategies and the evaluation and development of novel computational trait 

mapping techniques.  The work is divided into two major aims:  1) to identify and 

characterize laboratory environmental factors influencing thermal nociception; 2) to 
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develop and refine a purely computational genetic mapping techniques which allow one 

to map traits from phenotypic observations of groups of inbred mice.  Together, these 

allow for a much more detailed understanding of individual differences in basal thermal 

pain sensitivity than genetic analysis alone can provide, and will produce computational 

methods that can be applied to analysis of many complex traits.    
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2.  Relative Role of Environmental Factors Influencing Thermal Nociception in the 

Laboratory. 

2.1 The impact of the laboratory environment on behavioral genetics 

Studies have demonstrated that mouse genotype interacts importantly with the 

specific laboratory environment in which such traits are examined (Cabib et al., 2000; 

Crabbe et al., 1999). Given that the heritability of most bio-behavioral traits is 

moderately low (Plomin, 1990) an exclusive focus on genetic determinants will not 

succeed in explaining individual differences.  Furthermore, controlled manipulations of 

the laboratory environment are atypical in genetic studies (e.g., those using transgenic 

mutants), and many sources of between- and especially within-lab variability are ignored 

or unidentified.  Because such factors are not normally assessed simultaneously, their 

relative impact is also unknown.  To the extent that environmental factors influencing 

behavioral traits remain obscure, they will retain the ability to confound experiments or 

render findings idiosyncratic to the particular set of conditions in which testing occurred, 

and arguments have been made for standardization (van der Staay and Steckler, 2002) or 

systematic variation (Würbel, 2002) of the laboratory environment in genetic studies.   

Two striking empirical demonstrations of the impact of laboratory environment related 

factors on genetic studies have been performed.  Crabbe et al. (1999) measured the same 

phenotypes in the same strains of mice, in three different laboratories using identical 

equipment, and found that while the pattern of strain differences remained somewhat 

consistent, the environment had substantial influence on the magnitude of such effects.  

Within-laboratory factors such as diet have also been demonstrated to influence the 

direction of genetic differences in a behavioral trait (Cabib et al., 2000).  However, 
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neither of these studies explicitly focused on variables that normally fluctuate within a 

laboratory in the course of collecting data for behavior-genetic analysis.   

 

2.1.1 Laboratory environmental factors that may influence the study of nociception.  In 

the typical performance of experiments, information is often recorded on potential 

sources of variability in addition to genetic influences.  These include organismic factors 

such as sex, weight, age, time of day; housing conditions such as cage population, 

humidity/temperature of the animal colony, food composition; and factors particular to 

the testing day such as the person doing the testing, time of day, season, and the order in 

which animals in a cage are tested.  Many of these factors have been previously identified 

as playing a role in the determination of basal pain sensitivity.  Sex differences in basal 

thermal nociception have been shown to interact with genotype in both inbred (Kest et 

al., 1999) and outbred strains, in which it was shown that even dependence of this effect 

on the estrous cycle varies with genotype (Mogil et al., 2000).  Time of day in relation to 

the photoperiod in which subjects are housed has also been shown to influence 

nociception, (Frederickson, 1977; Morris and Lutsch, 1967) and has also been shown to 

interact with genotype (Kavaliers and Hirst, 1983; Wesche and Frederickson, 1981; 

Castellano et al., 1985).  Crowding stress has been shown to affect nociception (Defeudis 

et al., 1976; Coudereau et al., 1997; Puglisi-Allegra and Oliverio, 1983; but see Adler et 

al., 1975); this has also been shown to interact with genotype (Bonnet et al., 1976; 

Defeudis et al., 1976).  Although not extensively studied, several reports indicate that 

seasonal and climate related factors influence pain sensitivity.  One clinical case study of 

tooth pain in which a single subject was observed for three years found a circannual 
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rhythm decreased sensitivity in fall and increased sensitivity in spring (Pollmann and 

Harris, 1978) and recent work on a large sample of patients suggests that rheumatic pain 

is slightly increased in the summer (Hawley et al., 2001).  While temperature has been 

shown to correlate positively with pain, humidity has been shown to correlate negatively 

with self-reported pain symptoms in rheumatoid arthritis patients  (Patberg et al., 1985).  

Other environmental variables have not been explicitly considered, such as the order of 

testing within a cage, and the ambient temperature of the animal colony.  However, data 

is available on these and other factors through standard information collected in the 

course of running experiments and maintaining records of animal colony conditions.  The 

relative importance of these factors can only be studied by considering them 

simultaneously, and a comprehensive study of their interactions with genotype has not 

previously been performed.  

 

2.1.2 The tail-withdrawal assay.  Nociception has been studied in the laboratory mouse 

using a wide variety of assays (Mogil et al., 2001).  By far, the most commonly employed 

is a measure of acute, thermal pain sensitivity--the tail-flick test developed by D'Amour 

and Smith (1941).  In this threshold assay of nociception, a noxious thermal stimulus is 

applied to the tail of a restrained animal and the latency to vigorous withdrawal from the 

stimulus is measured by the experimenter.  Although the assay as originally developed 

uses radiant heat from a high-wattage bulb as the noxious stimulus, a common variant, 

the tail-withdrawal test, is performed using hot water immersion as the stimulus (Ben-

Bassat et al., 1959).  Though not well representative of clinical pain in humans, this assay 

possesses face validity in that humans appear to have similar pain thresholds on their 
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extremities (Cunningham et al., 1957) and accurately predicts the clinical potency of 

opiate analgesics (Taber, 1974).   

 

2.1.3 A unique approach to the identification and characterization of important 

environmental factors.  In the course of ongoing studies of the genetic mediation of pain 

and analgesia over the last eight years, mice of varied genotypes have been tested in 

numerous different environmental conditions on the 49°C hot water tail-withdrawal test.  

Even though a large amount of data is available, this data is unbalanced with respect to 

the variables studied, and many interaction conditions are simply not represented, 

particularly for infrequently tested strains.  Without knowing a priori which factors are 

particularly worthy of study in a data set such as this, most parametric modeling 

techniques are inappropriate because parameter estimates will be biased and confounded.  

Non-parametric data mining techniques can be employed to generate hypotheses about 

the importance of each factor’s effects and the presence of interactions between factors if 

a sufficiently large amount of data exists.  These machine learning algorithms are used 

primarily to classify objects based on a large number of features, and are often used to 

select the features that best achieve this goal.  This is usually achieved by partitioning the 

data into subsets based on the features until the resulting partitions contain members of a 

single class.  Classification and regression tree analysis (CART, Breiman et al., 1984) is 

one such technique that has been extended for application to continuous dependent 

variables. 

A three-step approach to the study of these environmental factors was employed.  

First, CART (Breiman et al., 1984; Steinberg and Colla, 1995) was employed to get a 
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relative ranking of the importance of factors involved in thermal nociception, and to 

evaluate non-parametrically the environmental influences that may exist.  This was 

followed up by linear modeling in a reduced data set containing most common strains to 

obtain a parametric assessment of factor level effects through the estimation of least-

squares means in an effort to further develop hypotheses about environmental effects.  

Finally, a series of balanced experiments were performed to verify the results of the 

above analyses, determine the relative role of genetic and environmental factors through 

variance partitioning, and characterize more specifically the nature of these 

environmental factors.   

 

2.2 Methods 

2.2.1. Subjects.  Mice of both sexes of the following mouse populations have been either 

purchased from The Jackson Laboratory (Bar Harbor, ME) for use in inbred strain 

surveys:  129P3/J, A/J, AKR/J, BALB/cJ, C3H/HeJ, C3HeB/FeJ, C57BL/6J, C57BL/10J, 

C58/J, CBA/J, DBA/2J, LP/J, NON/LtJ, NOD/J, RIIIS/J, SJL/J, SM/J, SWR/J or bred in 

our vivarium.  These strains are frequently used either because they facilitate the 

comparison of the present data to previously existing nociception data through genetic 

correlations, or because they have been genotyped at microsatellite markers.  Other 

strains in the archival data include outbred strains:  Hsd:SW (ND4), Sim:SW, Hsd:ICR 

(CD-1); mutant strains:  C3HeB/FeJ x STX/Le-Mc1rE-so/+ Gli3Xt-J/+ Tw/+ (sombre), 

C57BL/6J-Mc1re (recessive yellow); transgenic knockouts:  B6;129-Htr1btmHen (5HT1B 

receptor KO), B6;129-Oprd1tmPin (delta opioid receptor KO), B6;129-OprmtmPin (mu 

opioid receptor KO), B6;129-PomctmLow (pro-opiomelanocortin KO); selectively bred 
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lines:  HA, LA, HAR, LAR; hybrids:  B6129F1, B6D2F1, B6D2F2, C3HAF2, B6AF2, 

CXBK; and 33 members of the BXD/Ty RI strain set.   

 

2.2.2 The tail withdrawal assay and training of experimenters.  Naïve, adult (>6 week 

old) mice group housed with their same-sex littermates were typically brought on a 

rolling cart from a nearby vivarium to the testing room 30 min to 2 hours before testing.  

Mice were tested as described in detail previously (Mogil, 1999a).  For testing, mice were 

individually removed from their home cage and introduced to a cloth/cardboard “pocket” 

which they freely entered.  Once the mouse is restrained, the distal half of the tail is 

dipped with light downward pressure into a bath of circulating water thermostatically 

controlled at 49.0 ± 0.2°C, and the latency to a vigorous, reflexive withdrawal of the tail 

measured to the nearest 0.1 s with a handheld stopwatch.  To increase accuracy, two such 

measurements separated by 10-20 s were made and averaged for each mouse.  The mouse 

was then immediately returned to its home cage.  The interval between testing one mouse 

and the next from the same cage ranged from 15 seconds to several minutes. 

All experimenters were trained to perform this assay either by JM or SW, a graduate 

student trained by JM.  Data by an experimenter were not collected until he or she 

demonstrated consistent tail-withdrawal baseline latencies within the range of previously 

observed strain values.  

 

2.2.3 Housing.  All mice were housed in a 12:12 h light/dark cycle (lights on at 07:00 h) 

in a temperature-controlled (22 ±2°C) vivarium, and given ad lib access to food (in 
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Portland, OR:  Purina Mouse Chow; in Champaign, IL:  Harlan-Teklad 8604) and tap 

water.  The vast majority of mice were bred in house and weaned at 18-21 d.   

  

2.2.4 Construction of the data archive.  An archival data set of 8034 observations of basal 

thermal nociceptive sensitivity on the 49ºC tail-withdrawal assay was constructed from 

the original data recorded in the course of experiments on the genetic basis of nociception 

and antinociception since 1993.  In the course of performing experiments, each 

experimenter typically records his or her name, geophysical variables including the time, 

date and hence season of the experiment, organismic factors including the age, weight, 

sex and strain of the mice, and husbandry factors including the cage population and order 

in which the mice within a cage were tested.  The facility in which the data were 

collected was also noted.  This archive was merged with animal colony climate records 

for all data collected at the University of Illinois.  These records, created by laboratory 

animal care staff, contained the daily high and low temperature of the animal colony, and 

the humidity range for data collected after October 1999.  The contents of the data 

archive are summarized in Table 1. 

 

2.2.5 Classification and Regression Tree analysis.  In a complex and unbalanced data set 

of high dimensionality such as this, determination of the relative contribution of factors 

and an unbiased assessment of factor effects are not feasible through typical parametric 

inferential techniques.  Though data reduction methods including principal components 

analysis are often used to decrease the number of terms that would be incorporated into 

later modeling, many the factors considered here are non-ordered categorical variables, 



13

Table 1.  Summary of the Tail Withdrawal Variability Data Archive 
 
Factor Type        Factor Level n  Comments       
 
Organismic Strain CD-1 276 ICR stock from Harlan Sprague Dawley Inc. (Indianapolis, IN) 
 (outbred) SW-ND4 105 Swiss-Webster stock from Harlan Sprague Dawley Inc. 
  SW-Sim 928 Swiss-Webster stock from Simonsen Inc. (Gilroy, CA) 
  SW-und. 65 Swiss-Webster stock from either Harlan or Simonsen (undetermined) 
 Strain B6129F1 15 (C57BL/6J x 129P3/J)F1 
 (hybrid) B6AF2 15 (C57BL/6J x A/J)F2 
  B6D2F1 128 (C57BL/6J x DBA/2J)F1 
  B6D2F2 757 (C57BL/6J x DBA/2J)F2 

  C3HAF2 263 (C3H/HeJ x A/J)F2 
Strain 129P3/J 211 Previously known as 129/J  (The Jackson Laboratory, Bar Harbor, ME) 

 (inbred) A/J 368 
  AKR/J 250 
  BALB/cJ 276 
  C3H/HeJ 214 
  C3HeB/FeJ 133 
  C57BL/6J 744 
  C57BL/10J 278 
  C58/J 122 
  CBA/J 223 
  DBA/2J 563 
  LP/J 39 
  NOD/J 38 
  NON/J 28 
  RIIIS/J 122 
  SJL/J 27 
  SM/J 135 
  SWR/J 16 
 Strain 5HT1BKO 257 129-Htr1btm1Hen (maintained on a mixed 129 substrain background) 
 (mutant) CXBK 24 A recombinant inbred strain with a likely single-gene mutation 

DELTKO-1 217 129S6,C57BL/6-Oprd1tm1Pin 
  DELTKO-2 68 129S6-Oprd1tm1Pin  
  ENDKO 405 129S6,C57BL/6-Pomc1tm1Low 
  MUKO 60 129S6,C57BL/6-Oprmtm1Pin 

OFQKO 62 129S6,C57BL/6-Npnc1tm1Pin 
  e/e 95 C57BL/6J-Mc1re  (recessive yellow spontaneous mutants) 
  Sombre 111 C3HeB/FeJ-Mc1rE-so/Mc1rE-so Gli3Xt-J/+ (sombre spontaneous mutants) 
 Strain HA 61 Mice selected for high stress-induced analgesia from outbred stock 
 (selected) LA 57 Mice selected for low stress-induced analgesia from outbred stock  
  HAR 147 Mice selected for high levorphanol analgesia from heterogeneous stock 
  LAR 131 Mice selected for low levorphanol analgesia from heterogeneous stock  
 
 Sex Male 4109   
  Female 3766 
  unknown 159 
 Age <6 weeks 208 
  6-8 weeks 1814 
  8-10 weeks 1238 
  >10 weeks 1209 
  unknown 3565 
 
 
 Weight 10.0-14.9 g 102 
  15.0-19.9 g 1564 
  20.0-24.9 g 2755   
  25.0-29.5 g 1857 
  ≥30.0 g 1037 
  unknown 719 
      Continued on next page. 
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Table 1.  Summary of the Tail Withdrawal Variability Data Archive-continued 
 
Environmental – Husbandry 
 Testing  Portland, OR 1787 
 Facility Champaign, IL 5840 
  Milwaukee, WI 161 
  Piscataway, NJ 246 
      

Cage Density 1 188 
  2 993  
  3 2396 
  4 2826 
  5 1019 
  6 349 Females only 
  7 34 Females only 
  unknown 229 
 
Environmental – Experiment-Related   

Year 1993 55 In Portland  
1994 97 In Portland 
1995 780 In Portland 
1996 843 In Champaign 
1997 583 In Champaign 
1998 846 In Champaign 
1999 2269 In Champaign and Milwaukee 
2000 1614 In Champaign 
2001 935 In Champaign and Piscataway 
unknown 12 

 
 Season Winter 2167 Defined by solstices 
  Spring 1690 
  Summer 1896 
  Fall 2269 
  unknown 12 
 
 Temperature <65.0°F 12 Temperature measured in vivarium, not testing room 
  65.0-69.9°F 366 
  70.0-74.9°F 5453 
  ≥75.0°F 8 
  unknown 2195 
 
 Humidity 0-19.95% 788 Humidity measured in vivarium, not testing room 
  20-39.95% 1750 
  40-59.95% 264 
  60-100% 423 
  unknown 4809 
 
 Time of Day 09:30-10:59 h 863 Refers to starting time of experiment 
  11:00-13:55 h 3746 
  14:00-17:00 h 3169 
  unknown 256  
 
 Experimenter AK 15 An undergraduate 
  AR 118 An undergraduate 
  BM 828 An undergraduate 
  CB 19 An undergraduate 
  EC 12 A graduate student 
  HH 259 A graduate student 
  JH 482 An undergraduate 
  JM 3376 The Principal Investigator 
  KM 190 An undergraduate 
  LN 12 An undergraduate 
  SW 2723 A graduate student 
 
 Order  1st 2649 
 of Testing 2nd 2386 
  3rd 1744 
  4th 936 
  5th 249 
  6th 54 
  7th 4 
  unknown 12 
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rendering these methods difficult to employ.  While some of these may be correlated and 

reflect a larger unifying phenomenon such as stress induction, or perhaps participate in 

more trivial correlations due to the timing and other mundane issues in the running of 

experiments, our intention was to look at these factors individually as they operated in the 

laboratory because that is the level at which they can be controlled in practice.  

Classification and regression tree (CART) analysis (Breiman et al., 1984; Steinberg and 

Colla, 1995), an automated data-mining technique, was thus used to characterize and 

obtain a preliminary ranking of the importance of these factors.   

CART is a recursive partitioning technique ideal for large, complex data sets with 

many predictors.  The technique develops rules for partitioning data into subsets.  This is 

done by exhaustively testing all possible splits by each predictor to identify the 

partitioning rule that results in the most improvement, defined as the difference between 

the mean variance in the resulting two nodes relative to the variance in the parent node.  

This is performed on each successive node until the data have been split completely.  The 

resulting decision tree is then pruned using a 10-fold cross-validation technique to select 

the optimal tree that can be used to predict the value of tail-withdrawal latency from the 

factors entered into the analysis.  Briefly, this method involves dividing the data set into 

10 sub-samples.  These are held out one at a time, and the remaining 9/10 of the data are 

used to grow a tree, with the hold out sample used to find the error rate of the resulting 

sub-trees of various sizes.  Error estimates from sub-trees of similar complexity built 

from the 10 sub-samples are then combined and used to find the error rate for similar sub-

trees made from the full data set.  The optimal tree is the sub-tree with the size and 

complexity associated with minimal error.   
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Though each of the splits is based on a main effect, interactions may be found by 

examining the pattern of splits.  For example, if a particular experimenter generates high 

baselines, but the effect is stronger late in the day after the experimenter has consumed a 

large amount of coffee, the data might first be split by experimenter, with this 

individual’s data separating from the rest of the group.  This partition would then be split 

again by time of day, a factor that may not account for much variability in the other 

experimenters.  Outliers are typically split off early in the tree building, and because of 

the cross-validation approach, only those data subsets containing these data are affected, 

reducing their impact on the final pruned tree.   Missing data are handled by the 

consideration of surrogates.  The surrogate is a factor that is highly correlated with the 

factor being used to generate the partitioning rule, and is used to construct a rule that 

most nearly generates the partitions that the primary splitter generates.  Each missing 

observation is then classified based on the value of its surrogate.  

The advantage of using CART is that it allows for the ranking of factors that play 

the greatest role in reducing variance in the variety of contexts that are revealed in the 

process of splitting the data.  The rankings are assigned based on the relative variance 

reduction (improvement) attributed to each of the factors when used as a primary splitter 

or as one of the top five surrogates (factors which are highly correlated to the splitter, 

whose importance may be masked by the splitter) at each node.  The highest ranked 

factor is arbitrarily assigned a score of 100 and the other scores are relative to that.   

Predictors entered into the model were strain, sex, experimenter, time of day, 

season, humidity, order of testing, and housing density.  Some factors (e. g., temperature, 

weight, age) were excluded because insufficient within-factor variability existed in the 
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data set.  Preliminary models indicated that testing facility might influence the trait; 

however, it was excluded from the model because data from multiple facilities were only 

available for two experimenters.   

Because this algorithm is known to increase the probability of using a continuous 

or high-level categorical factor as a splitter (Loh and Shih, 1997), remedial measures 

were taken to increase the generalizability and validity of these rankings.  This was done 

because we were interested in evaluating the relative rankings of these factors in their 

influence on tail-withdrawal latency, not in maximally capitalizing on their predictive 

value.  For continuous factors a preliminary tree was grown to determine where splits 

tended to occur, and the data were then broken up into a moderate number of categories 

of equal range based on the rough locations of these splits.  For all factors, a penalty was 

imposed on the improvement at each node equal to the number of levels of each factor 

relative to the total number of levels in the analysis.  This penalty scheme has intuitive 

appeal (each factor is penalized according to the probability of it's use by chance) and it 

produces variable importance rankings that appear to agree with empirical results.   

 

2.2.6 Fixed-effects modeling and the computation of least squares means.  In an effort to 

estimate parametrically the magnitude of factor effects, a linear model fitting main effects 

and two-way interactions of the same eight factors was generated.  This enabled us to 

estimate least-squares (LS) means for levels of these factors.  Linear modeling was 

implemented using SAS v. 6.12 PROC MIXED  (SAS Institute, Cary, N.C.).  This 

technique uses a likelihood-based approach to estimate model parameters, which is less 

sensitive to idiosyncrasies in the data structure such as empty cells or sample size 
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imbalance.  Data were log transformed to satisfy model assumptions.  All factors 

modeled in CART and their two-way interactions were included in the full model.  

Higher-order interactions possessed insufficient degrees of freedom for inclusion in the 

model, and are of questionable biological relevance.  A subset of the data (n=1772) was 

used for which no missing values were present.  In addition, some factors were collapsed 

into fewer categories to facilitate estimability of the model.  The model was reduced until 

no non-significant fixed effects remained based on a significance threshold α = 0.05.  LS 

means were estimated based on this reduced model.  This enabled us to obtain a less 

biased estimate of factor level means than raw means can provide, but it should be noted 

that the estimates are biased by the absence of data in some cells, and a paucity of data in 

other cells.   

 

2.2.7 Controlled experiments.  The simultaneous study of the influence of these variables 

in a fully balanced and -crossed design would allow for partitioning of the variance, the 

determination of the precise proportion of trait variance accounted by genetic and 

environmental variables.  Therefore, a total of 192 mice from three inbred strains (A/J, 

C57BL6/J and DBA/2J) were tested as described above on a single day, with 

representation of all conditions of strain x sex x time x experimenter x order of testing.  

Each mouse was tested in either morning (10:00-11:00 h) or afternoon (14:30-15:30 h) 

sessions, by each of two experimenters (JM and SW) whose data comprise the bulk of the 

archival data set.  Factors held constant were age (42-45 d), weight (each mouse was 

within 2 g of the mean for that strain and sex), and housing density (4 mice/cage).  This 
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experiment had a completely balanced design representing all of the easily manipulable 

factors.   

  Experiments were performed to investigate the role of order effects because this 

factor is not widely appreciated to affect nociception.  A separate experiment on cage 

population effects was also performed because this factor can not be simultaneously 

studied with order effects in a balanced design.  In the order effects study, a total of 32 

SW mice, 4 per sex/order/condition were tested, then returned either to their home cage 

or to a separate holding cage, as a means of preventing tested mice from signaling 

untested mice.  In the cage population experiment, 96 mice from the A/J, C57BL6/J and 

DBA/2J strains were ordered from Jackson Labs (Bar Harbor, ME) and were allowed to 

acclimate for two weeks to housing in groups of either two or four.  These groups were 

chosen to investigate population effects apart from any impact of social isolation.  The 

mice were placed in a holding cage immediately after testing to avoid confound with 

order effects. 

   

2.3 Results 

2.3.1 Descriptive statistics of the tail-withdrawal archive.  The archival data set analyzed 

here consisted of baseline tail-withdrawal latencies for each of 8034 naïve adult mice, 

along with the following information (where available) recorded on data sheets at the 

time of testing:  genotype  (i.e., strain, sub strain and vendor; including 40 inbred, 

outbred, hybrid and mutant strains), sex, age, weight, testing facility, cage density, 

season, time of day, temperature, humidity, experimenter, and within-cage order of 

testing.  Summary information for this data set is shown in Table 1.  
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Figure 1.  a. Frequency histogram of responses on the 49°C tail-withdrawal (TW) assay.  Latency data 
from 8034 mice tested from 1993 to 2001 are represented.  b. TW latency means (±S.E.M.) of 32 outbred, 
hybrid, inbred, mutant and artificially-selected populations (all genotypes having n ≥ 50) tested over the 
same period.  Genotype nomenclature is fully described in Table 1. 
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 The distribution of phenotypes is shown in Figure 1a.  The mean latency of all these 

observations is 3.1 seconds, with a standard deviation of 1.3 seconds.  Typical of count 

data, this trait appears Poisson distributed and can be normalized by logarithmic 

transformation.  As can be seen in Figure 1b, mean responses of the various strains 

appear to differ profoundly.  Considering only inbred strains from this archive, broad-

sense heritability, H2, can be estimated from the ANOVA in Table 2 as  
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where σ2
G is the genotypic variance, σ2

E is the environmental variance, σ2
bs and MSbs are 

the between strain variance and mean-square respectively, n is the sample size for each 

strain, and σ2
ws and ΜSws are the within strain variance and mean squares.  When 

environmental factors are explicitly fit in a multi-way ANOVA, the MSbs includes 

additional terms for the gene by environment interaction components.  However, these do 

not contribute to similarity between individuals of the same strain, and thus must be 

added to the denominator (Lynch and Walsh, 1998).  In unbalanced designs, this can 

rapidly become a complicated situation, even with just a few environmental factors 

considered.  However, if these factors are not fit, the variance attributed to strains may 

actually come from correlated environmental factors and their interactions with strain.  

For example, the genetic variance for strains tested in different amounts by different 

experimenters will contain strain by experimenter variance.  In the event that strains are 

not all tested by all experimenters, the strain variance estimate will appear artificially 

high or low due to tester effects occurring only in some strains, i.e. the correlation of 

strain and experimenter will cause the estimate of genetic variance to be biased.  Despite 
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this concern, a heritability estimate was made from a one-way ANOVA, as shown in 

Table 2. 

 The broad-sense heritability estimate obtained from these data using this least-

squares estimation method is H2 = 0.24 ± 0.05.  An alternative method, which may be 

more appropriate in this situation because the data are normalized yet unbalanced, is to 

use maximum likelihood estimates of the variance components, σ2
G and σ2

E.  With this 

method, heritability is estimated to be 0.31, not far outside the standard error of the least 

squares estimate, but indicative of the bias inherent in unbalanced designs.   

 

2.3.2 Regression tree analysis.  The optimal tree selected by CART explained 42% of the 

variance in tail-withdrawal latency (based on cross-validation) and had a resubstitution 

relative error of 49%, (analogous to a multiple r2 of 51%).  These fit statistics may 

represent underestimates, because of the remedial measures described above.  The 

factors, ranked by CART, are shown in Table 3.  As can be seen, experimenter and 

genotype were found to have the greatest association with tail-withdrawal latency.  Also 

varying with the trait were environmental factors not commonly appreciated to be 

associated to pain sensitivity, including season, cage density, time of day (within a 12 h 

diurnal period), humidity and order of testing.  While the large size of the regression tree 

prohibits detailed discussion, an inspection of this tree can reveal some interesting 

properties of these factors.  For example, in every split by sex, female mice were found to 

be more sensitive than males to thermal nociception.  This finding shows that the sex 

difference, although limited in magnitude (see below), is robust across multiple testing 

contexts.  In virtually every split by order, the first mouse tested displayed a higher 
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Table 2.  One-way ANOVA table used to estimate heritability of tail withdrawal baselines. 
 
Source 

of 
Variance ad.f. 

Sums of 
Squares 

Observed Mean 
Squares 

bExpected Mean 
Squares 

Strain S-1 SSbs SSbs / (a-1) σws+kσbs 
 28 198.89 7.10 σws+186.32 σbs 
     

Error N-S SSws SSws/(N) σws 
 5543 647.10 0.12 σws = .11674 
     

Total N-1 SStotal   
 5571 845.99   

aS is the number of strains and N is the total number of individuals. 
The coefficient, k, is the number of individuals in each strain in a balanced design.   
bIn an unbalanced design, k = (1/S-1)*{N – (Σni

2/N)}, where ni is the number of individuals in the ith 
strain. 
 
 

Table 3.  Factor importance rankings computed by CART. 

 
Factor  Number of Levels  Score 

 

Experimenter  11   100.0 

Genotype   40   78.0 

Season    4   35.8 

Cage Density   7   20.4 

Time of Day   3a   17.4 

Sex    2   14.6 

Humidity  4b   12.0 

Order of Testing  7   8.7 

aTime of day levels were:  early (09:30-10:55 h), midday 
(11:00-13:55 h), and late (14:00-17:00 h). 
bHumidity levels were:  high (≥60%), medium-high (40-59%), 
medium-low (20-39%), and low (<20%).  
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latency than all subsequently tested mice.  In addition, late testing times, spring testing 

dates and higher humidity in the testing room were usually associated with increased 

nociceptive sensitivity.  Cage population effects vary throughout the tree.   

 

2.3.3 Fixed-effects modeling and computation of least squares means.  The full model 

with all eight factors and their two way interactions has a –2 residual log likelihood of 

696.2, and the final reduced model has a –2 residual log likelihood of 461.3, χ2 = 234.9, 

d.f. = 113, p < 0.05.  Terms that remained in the final fixed effect model of tail-

withdrawal latency from which LS means were derived are presented in Table 4.  These 

LS means are presented along with analogous raw means in Table 5.  Figure 2 illustrates 

the intriguing but complex effect of season and vivarium humidity on thermal nociceptive 

sensitivity. 

 

2.3.4 Controlled experiments.  ANOVA was performed on the five-factor (strain x sex x 

time x experimenter x order) design.  This analysis, presented in Table 6, was used to 

partition the trait variance among genotypic, environmental and gene by environment 

interaction sources.  Sex is represented as a genotype by environment factor, although 

this status is debatable.  Regardless of whether sex is considered a purely environmental 

factor, a purely genetic factor, or an interaction, in this case the influence of sex by itself 

is miniscule (0.4%); it is the sex by environment interactions that account for 7.9% of the 

variance.  Collectively, Figure 3 shows that 87% of the total sums of squares in this 

experiment could be explained by genotype (27%), environmental factors (45%) and 
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Table 4. The tail-withdrawal variability model 
                                            
Source              df     F   P-value 
                                             
STRAIN              10   7.19 0.0001 

SEX                  1  20.12   0.0001 

SEASON               3   0.82   0.4823 

TIME                 2   4.51   0.0111 

CAGEPOP              1   0.44   0.7268 

ORDER                5  27.84   0.0001 

PERSON               4  33.99   0.0001 

STRAIN x SEX        10   4.18   0.0001 

STRAIN x SEASON     30   3.46   0.0001 

STRAIN x TIME       19   1.80   0.0181 

STRAIN x CAGEPOP    10   2.09   0.0224 

STRAIN x HUMIDITY   30   1.64   0.0163 

STRAIN x PERSON     35   3.25   0.0001 

TIME x SEASON        4   3.10   0.0149 

SEASON x HUMIDITY    6   3.23   0.0037 

SEX x CAGEPOP        1   4.08   0.0436 

PERSON x TIME        4   3.16   0.0135 

CAGEPOP x SEASON     3   5.37   0.0011 

TIME x HUMIDITY      4   7.93   0.0001 

CAGEPOP x HUMIDITY   3   3.15   0.0241 

 
aFixed-Effects remaining in the final reduced model of tail-
withdrawal variability based on 1772 subjects.   
bThe denominator df = 1580.   
c Note that some  numerator df's are lower than expected 
due to the empty cells.   
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Table 5.  Influence on thermal nociception of individual levels of genetic and environmental factors. 

 
       Factor         Raw Datab           N                  LS Meansc        N                 Experimentd        N 
 Levela                     (s)                                                   (s)                                    (s) 
 
Experimenter 
 BM 2.5 (0.03) 828 2.6 (0.18) 166  
 JH 2.3 (0.04) 482 2.0 (0.21) 213 
 JM 3.6 (0.02) 3376 3.7 (0.36) 505 3.4 (0.12) 96  
 KM 3.0 (0.08) 190 3.0 (0.20) 21 
 SW 2.6 (0.02) 2723 2.2 (0.22) 867 2.1 (0.06)* 96 
 
Genotype       
 129P3/J 3.4 (0.09) 211 2.8 (0.41) 95 
 A/J 3.6 (0.08) 368 2.8 (0.24) 187 3.2 (0.15) 64  
 AKR/J 3.0 (0.07) 250 2.2 (0.22) 161 
 BALB/cJ 3.8 (0.09) 276 3.8 (0.34) 138 
 C3H/HeJ 2.4 (0.06) 214 2.4 (0.16) 408 
 C57BL/6J 2.5 (0.04) 744 2.1 (0.11) 108 1.9 (0.07)* 64 
 C57BL/10J 2.6 (0.06) 278 2.1 (0.11) 133 
 C58/J 2.7 (0.07) 122 2.5 (0.30) 88 
 CBA/J 2.6 (0.07) 223 2.4 (0.34) 239 
 DBA/2J 3.4 (0.05) 563 2.6 (0.16) 129 3.1 (0.14) 64 
 RIIIS/J 3.3 (0.11) 122 3.0 (0.41) 86 
 
Season *see Fig. 2 
 
Cage Density 
 1-3 2.9 (0.02) 3577 3.2 (0.35)e 939                      
 4-6 3.1 (0.02) 4194 2.0 (0.33) 833 
 
Time of Day 
 08:00-10:55 h 3.2 (0.04) 863 3.1 (0.35) 284 2.9 (0.13) 96 
 11:00-13:55 h 3.1 (0.02) 3746 2.2 (0.24) 894 
 14:00-17:00 h 3.0 (0.02) 3169 1.8 (0.27) 594 2.5 (0.10)* 96 
  
Sex  
 Female 2.9 (0.02) 4109 1.9 (0.30) 888 2.7 (0.12) 96  
 Male 3.2 (0.02) 3766 2.1 (0.32) 884 2.8 (0.12) 96 
       
Humidity *see Fig. 2                                                             
          
Order of Testing 
 1st 3.2 (0.02) 2649 2.3 (0.36)    642 3.0 (0.19)f 48          
 2nd 3.0 (0.02) 2386 2.0 (0.32) 567 2.8 (0.18) 48 
 3rd 3.0 (0.03) 1744 1.9 (0.30) 359 2.6 (0.16) 48 
 4th 3.0 (0.04) 936 2.1 (0.31) 204 2.5 (0.15) 48 
   
Values represent mean ± S.E.M. 49°C tail-withdrawal latencies. 
aOnly levels analyzed in the linear model are presented.  
bRaw data (n = 8034) from the full archival data set. 
cLeast squares (LS) means from a subset of data points (n = 1772) from 2000-2001. 
dMeans from a fully-crossed and -balanced experiment (n = 192) of May 15, 2001. 
eLS means suggested that this factor may affect tail-withdrawal latencies in male mice only. 
fA trend towards significance was obtained (p = 0.14); but see Fig. 4. 
*Significantly different from all other levels, p<0.05.  No attempt was made to assess the significance
of group differences from the raw data or LS means.
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Figure 2.  Influence of humidity and season on 49°C tail-withdrawal (TW) latencies in 1772 inbred mice.  
Main graph show vivarium humidity values measured daily at approximately 09:00 h.  The trendline 
represents a moving average of the values.  Insets show humidity by season interaction LS means (TW 
latency in seconds) calculated from these data.  Only humidity classes per season with n>30 are shown. 
As can be seen, tail-withdrawal latencies tend to decrease with increases in humidity, except perhaps in 
Winter. 
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TESTERxORDER E 2.087 3 0.696 1.942 0.128 0.7970821
SEXxTIMExTESTER E 0.775 1 0.775 2.164 0.145 0.2959936
SEXxTIMExORDER E 2.695 3 0.898 2.507 0.064 1.0292938
SEXxTESTERxORDER E 0.668 3 0.223 0.622 0.603 0.2551274
TIMExTESTERxORDER E 0.857 3 0.286 0.798 0.498 0.3273116
SEXxTIMExTESTERxORDER E 2.464 3 0.821 2.292 0.083 0.9410686
   
STRAINxSEX GE 2.079 2 1.039 2.901 0.060 0.7940267
STRAINxTIME GE 3.572 2 1.786 4.986 0.009 1.3642440
STRAINxTESTER GE 13.853 2 6.927 19.335 0.000 5.2908376
STRAINxORDER GE 1.635 6 0.273 0.761 0.603 0.6244510
STRAINxSEXxTIME GE 0.271 2 0.135 0.378 0.687 0.1035023
STRAINxSEXxTESTER GE 0.088 2 0.044 0.123 0.884 0.0336096
STRAINxSEXxORDER GE 0.965 6 0.161 0.449 0.844 0.3685598
STRAINxTIMExTESTER GE 0.586 2 0.293 0.818 0.444 0.2238093
STRAINxTIMExORDER GE 0.92 6 0.153 0.428 0.859 0.3513730
STRAINxTESTERxORDER GE 0.873 6 0.145 0.406 0.873 0.3334224
STRAINxSEXxTIMExTESTER GE 2.258 2 1.129 3.151 0.047 0.8623916
STRAINxSEXxTIMExORDER GE 2.356 6 0.393 1.096 0.370 0.8998205
STRAINxSEXxTESTERxORDER GE 1.659 6 0.276 0.772 0.594 0.6336172
STRAINxTIMExTESTERxORDER GE 2.208 6 0.368 1.027 0.413 0.8432953
STRAINxSEXxTIMExTESTERxORDER GE 5.114 6 0.852 2.379 0.035 1.9531757
        
Error  34.393 96 0.358   13.1356220
        
TOTAL  261.83     100

Table 6.  ANOVA from a balanced 5-way design 
 
Source  Type           SS         df         MS       F-ratio            P     % Variance
STRAIN G 70.801 2 35.401 98.814 0.000 27.0408280
   
SEX E 1.065 1 1.065 2.973 0.088 0.4067525
TIME E 9.013 1 9.013 25.159 0.000 3.4423099
TESTER E 88.971 1 88.971 248.346 0.000 33.980445
ORDER E 7.454 3 2.485 6.935 0.000 2.8468854
SEXxTIME E 0.012 1 0.012 0.033 0.857 0.0045831
SEXxTESTER E 0.000 1 0.000 0.000 1.000 0.0000000
SEXxORDER E 1.489 3 0.496 1.385 0.252 0.5686896
TIMExTESTER E 0.248 1 0.248 0.692 0.407 0.0947179
TIMExORDER E 0.401 3 0.134 0.373 0.772 0.1531528
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Figure 3.  Partitioning the Type I sums of squares of 49°C tail-withdrawal test variability.  Shown are 
percentages of the corrected total variance in a fully-balanced and -crossed study performed on A/J, 
C57BL/6J and DBA/2J mice on a single day. Sex appears as a genotype x environment factor, although 
there exists some debate about this status (see text). 
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genotype x environment interactions (15%).  The factor level means from the balanced 

experiment, and associated significance testing are presented in Table 5.  Although an 

attempt was made to analyze this balanced experiment using CART, no tree could be 

built.  CART requires many hundreds of observations and a large number of variables 

(Johnson and Wichern, 1998), and this balanced experiment apparently did not have 

sufficient data for the analysis. 

 Figure 4a shows that the effect of even the lowest ranking factor, order of testing, can 

be demonstrated in a controlled experiment using a sensitive strain.  Of the mice returned 

to their home cage after testing, the third and fourth mice have tail-withdrawal latencies 

that are significantly different from those of the first mouse to be tested, p < 0.05.  In the 

group placed in a holding cage after testing, no differences were observed.  However, the 

fourth mice tested from the home cage group differed significantly from the first mice 

tested and their counterparts in the holding cage group.  Figure 4b shows the effect of 

within cage order of testing on morphine analgesia.  Because individual differences in 

basal thermal nociceptive thresholds may influence the magnitude of post-drug treatment 

latencies, a commonly used measure of analgesic effect is the percent analgesia,   
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Analgesic doses (AD50s) are higher in the fourth mouse tested than in the other groups,  p 

< 0.05.  No significant population effects were observed in the ANOVA (strain x sex x 

population) though strain (p < 0.001) and sex (p < 0.025) differences were replicated, as 

shown in Table 7. 
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Figure 4.  a.  Influence of within-cage order of testing in Swiss-Webster (SW-Sim; Simonsen 
Labs) mice.  Symbols represent mean (±S.E.M.) 49°C tail-withdrawal (TW) latencies of mice 
tested and then immediately returned to their home cages or transferred to a holding cage 
after testing. *Significantly different than 1st mice, p<0.05.  •Significantly different than 1st mice 
and Holding Cage (4th) mice, p<0.05.  b. Order of testing effects on morphine analgesia. 

Table 7.  ANOVA from the strain, sex and population experiment.   
                              
                            Sum-of-   Mean- 
Source                      Squares    df        Square     F-ratio       P-value 
  
STRAIN                       17.133      2         8.567      22.433       0.000 
SEX                             0.960      1         0.960        2.514       0.117 
CAGEPOP                           0.375      1         0.375        0.982       0.325 
STRAINxSEX                     3.427     2           1.713        4.487       0.014 
STRAINxCAGEPOP                0.498      2         0.249        0.652       0.523 
SEXxCAGEPOP                       0.143      1        0.143        0.373       0.543 
STRAINxSEXxCAGEPOP        0.643     2         0.321        0.841       0.435 
Error                        32.079            84         0.382 
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2.4 Discussion of the environmental impact on thermal nociceptive sensitivity  

In more than 10 separate strain surveys of 49°C tail-withdrawal sensitivity 

performed in our laboratory each using a common set of 12 inbred strains, broad-sense 

heritability has been estimated to be between H2 = 0.21 and 0.41 (Mogil et al., 1999a).  In 

the large archive, the heritability is estimated at approximately 0.241, and in the 

controlled experiment it is estimated at 0.35.  This leaves a clear majority of the variance 

to be explained by factors other than genotype, even if this estimate may be negatively 

biased due to the presence of the many other factors in the data set that were not fitted in 

the heritability analysis.  The five-factor experiment performed here indicates that 

individual differences on this trait are largely due to environmental factors and genotype 

by environment interactions.  Modeling also demonstrated that all environmental factors, 

with the exception of order, interact significantly with genotype. 

The information from the original data archive is highly confounded because it 

contains numerous empty cells and heavily unbalanced data.  Therefore the CART 

results, raw means and LS means must be interpreted cautiously, and where possible 

confirmed by experiments in which levels of each factor are systematically varied in 

balanced designs.  CART analysis reveals that the most important predictor of tail-

withdrawal latency is experimenter, followed by genotype and season.  Strain effects are 

no surprise (Mogil et al., 1999a), but it is interesting to note that the effect of 

experimenter is greater than that of strain in both the data mining and controlled 

experiments.  The importance of experimenter is generally in agreement with the recent 

findings of Crabbe and colleagues (1999), who simultaneously tested a common set of 
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mouse strains on a number of behavioral assays using identical methods in different sites.  

Although the relative ranking of the strains in that study was similar at each site, the 

absolute performance differed greatly from site to site.  This variability can only be 

accounted for by factors not explicitly controlled for, notably including the specific 

experimenters in each laboratory.  An important aspect of many pain tests is the 

necessary use of restraint, which can produce stress-induced analgesia (SIA), either to 

perform the test and/or to administer analgesic drugs.  Genetic influences on the amount 

of SIA have been demonstrated (Panocka et al., 1986; Mogil et al., 1996).  Differences in 

restraint method (Plexiglas chamber vs. cloth cardboard holder) can result in large 

differences in the tail-withdrawal latency (Mogil et al., 2001), but subtle differences in 

the manner in which each experimenter restrains mice may be a sufficient source of 

experimenter differences.  It should be noted that this is not the only possible source of 

experimenter effects, which may include pheromonal cues, scents, reaction time, and the 

ease with which mice are removed from the cage for testing.  For experimenter, genotype 

and time of day factors, the influence of factors suggested by the raw data and LS means 

were confirmed as significant. Our finding of decreased latencies (i.e., increased 

sensitivity) in the afternoon may be in contrast to some rodent data obtained using the 

hot-plate test (Kavaliers and Hirst, 1983; Wesche and Frederickson, 1981), but appears to 

agree with at least some data obtained in humans (Folkard et al., 1976; Kleitman, 1963; 

Zahorska-Markiewicz, 1988). 

Season was another factor ranked highly by CART.  This factor is difficult to 

study in a controlled fashion, requiring at least 2-3 years of observations to truly 

demonstrate a circannual pattern.  It may be possible to identify a data subset from the 
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archive to achieve this statistically.  One major concern is that seasonal cues should be 

absent from the controlled light cycle of the animal colony, but such cues apparently may 

remain.  Notably, climate records reveal temperature to be well controlled, but humidity 

fluctuating freely in the animal colony (Figure 2) in a manner that could cue season.  

However, the effect is not simple, with season and humidity interacting significantly in 

the data archive (Table 4).  Nociceptive threshold least-squares means are generally 

higher in low humidity, regardless of season (Figure 2).  This is in agreement with human 

clinical data (Aikman, 1997) from which an apparent increase in pain sensitivity in 

conditions of high humidity is observed.  While this appears to be at odds with work by 

Patberg et al., (1986), the latter work was based on self-report, which do not agree with 

measured clinical scores in the large-sample seasonal study by Hawley et al. (2001).  It 

also appears as though in the laboratory mouse, nociceptive thresholds are elevated in the 

spring and summer and lower in the fall and winter, in agreement with Hawley et al. 

(2001), though the lack of occurrence of all humidity levels for all seasons in the present 

study makes such comparisons difficult to make.  It is highly likely that other factors are 

correlated with these observations, including tester and strain, particularly when one 

considers that all of the data from a particular day, and thus possibly a bulk of the data 

from a particular humidity can come from a single experimental run by a single tester.  

Efforts are underway to directly manipulate humidity within season to try to isolate the 

confounded effects of season and humidity.  

For sex and order of testing, trends in the same direction as the LS means were 

seen, but significant differences were not obtained in these strains and with this sample 

size, attesting to the relatively low impact of these factors.  The sex difference observed 
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in CART, with males less sensitive to thermal pain than females, is in agreement with 

previous findings by other investigators in independent studies (Berkley, 1997) and in our 

own work (Mogil, 2000), though these latter data are a small subset of the data archive, 

so agreement might be expected.  It should be noted that though the sex difference 

observed in the five-factor experiment is small, sex by environment interactions account 

for an appreciable amount of variance.  This may be indicative of the operation of sex as 

a genotype by environment factor, in which the genetics that produce biological sex 

differences result in differential sensitivity to environmental factors.  Though this appears 

to be incompatible with the consistency of the sex differences observed in the CART 

analysis, it is not.  The interaction occurs because for this trait and the mice studied 

herein the magnitude of sex differences varies in different environmental contexts, but 

not the direction, thus a consistent direction of sex effects is observed in the regression 

tree.   

The order effect, a previously unknown influence on nociceptive sensitivity, can 

be eliminated by preventing the exposure of naïve mice to previously tested mice.  This 

suggests that mice are somehow signaling their cage mates, likely through release of 

pheromones or via ultrasonic vocalizations.  The relevance of order effects to pain 

research is magnified by our observation that measurements of the efficacy of five 

different analgesics are even more greatly affected by order of testing, with the first 

mouse tested from a cage as much as 50% more sensitive to the drug than the fourth 

mouse (Figure 4b).  

Cage population density effects, though present in the LS means and ranked as the 

fourth most influential by CART were not seen in a controlled experiment.  There are 
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several possible explanations for this.  The high ranking of the factor in CART may be 

due to the fact that all levels of population were considered separately in this analysis, 

whereas they were collapsed in the fixed effects modeling.  Indeed, when CART was run 

on the same data with population collapsed into a two category factor, this factor was 

ranked seventh in importance, while all other factors remained in the same relative 

positions as shown in Table 8.  In the controlled experiment we only compared cage 

populations of two and four mice per cage, and while these are representative of the two 

population categories in the modeling study, they are not the extreme conditions of cage 

population.  We did not want to include a condition in which mice were in social 

isolation, as this may be a qualitatively different phenomenon than the relative crowding 

conditions that we sought to study.  In agreement with modeling findings, however, 

increased tail-flick latencies to radiant heat have been observed in rats and mice housed 

alone (Gentsch et al., 1988; Naranjo and Fuentes, 1985; Puglisi-Allegra and Oliverio, 

1983).  Also, the two-week period of acclimation to housing may not have been 

sufficient.  Many of the mice in the archive are grouped at weaning into various 

populations based in part on litter size, which may be influenced by strain related and 

seasonal fecundity.  These correlated factors may have influenced the cage population 

effects obtained in the archive analysis.  Another possibility is that population effects 

may be due to the presence of mice with high test order in the data archive for high cage 

populations.  Because we performed the holding cage manipulation described above, the 

order effect would not be present in this experiment.  

The results from data mining are corroborated by many previous studies in which 

these factors or similar factors were directly investigated.  However, there are few 
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Table 8.  Factor importance rankings with population collapsed into a two-

category variable. 

 
Factor  Number of Levels  Score 

 

Experimenter  11              100.0 

Genotype   40   75.8 

Season    4   36.2 

Time of Day   3a   14.9 

Sex    2   14.1 

Humidity  4b   12.0 

Cage Density   2c   10.1 

Order of Testing  7     7.3 

aTime of day levels were:  early (09:30-10:55 h), midday (11:00-13:55 h), 
and late (14:00-17:00 h). 
bHumidity levels were:  high (≥60%), medium-high (40-59%), medium-low 
(20-39%), and low (<20%). 
cCage Density levels were: low 1-3 and high 4-6.  
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comparable studies in which all or even a subset of these factors are considered together.  

The higher order interactions of these factors observed in the five-way experiment are 

quite difficult to interpret biologically in any detailed sense, and the possibility of 

observing five-way interactions is a risk of considering so many factors simultaneously.  

This approach allowed us to partition the sums of squares in the most naturalistic 

situation possible--perhaps a benefit that outweighs the problem of interpretation this 

created.  Strain by time, strain by sex and strain by tester interactions may be interpreted 

in terms of various genetic factors segregating in the strains studied here, each potential 

sites of differential interaction with the environment. 

Overall, the present study demonstrates that for a bio-behavioral trait such as 

thermal pain responsiveness as tested in a modern pain research laboratory, it is possible 

to identify both genetic and environmental factors associated with trait variance.  

Certainly, the ability of some of these factors to affect nociception in rodents and humans 

has been noted previously.  Ultimately, the operation of all the factors considered herein 

needs to be further explicated with mechanistic studies in mice and humans.  We expect 

that for a number of laboratory environmental factors, stress level may be a common 

mediator, given the well-known ability of environmental stressors to modulate pain 

sensitivity in either direction depending on its parameters (Jorum, 1988).  The present 

findings also have immediate implications for current attempts to identify genes relevant 

to complex traits like pain.  Given that an overwhelming proportion of variability in 

nociceptive sensitivity is accounted for by environmental factors and their interaction 

with genes, the mere elucidation of pain genes will not succeed in explaining the nature 

of individual differences.  Once the relevant genes are found, however, systematic 
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investigation of gene by environment interactions may yield clinically important 

information leading to the individualization of pharmacologically- and behaviorally-

based treatment strategies.   

On a broader note, this study suggests that even when laboratory environmental 

conditions are assumed to be “controlled” to the standard of the existing literature, 

serious sources of environmental variability exist.  Many of these have a measurable 

effect on behavior, even in small studies.  Though the genetic similarity of inbred strains 

allows for comparison of data within and across labs, such studies must be done with 

consistency of environmental conditions in mind.  This is particularly true for the study 

of behavioral traits, which are largely determined by environment and gene-environment 

interactions.   
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3.  Development and Evaluation of a Haplotype Based Computational Algorithm for 

the Genetic Analysis of Behavioral Traits in Inbred Mouse Strains 
 
The genetic analysis of behavior is typically achieved through two major 

approaches.  One is the breeding of targeted or spontaneously arising mutant organisms, 

where the assumption is that the effect of a single altered gene can be studied in an 

organism by comparison to controls with an intact (“wild type”) gene.  The other is the 

detection of genomic regions associated with phenotype.  These regions, called 

quantitative trait loci, are identified by associating phenotypic values with genotypes at 

markers of known location.  Both of these approaches have benefits and limitations, and 

ideally should be used in concert (Belknap et al., 2001).  The generation of mutant strains 

necessarily involves confounding effects of genetic background that can influence studies 

of pain related phenotypes (Lariviere, Chesler and Mogil, 2000).  Compensation often 

occurs when mutations are present, further obscuring interpretation of findings.  

Furthermore, this approach is inefficient if one has no a priori hypothesis about the role 

of the mutated gene in question, or about which genes are involved in a given behavior.  

The detection of QTLs is a method that allows one to identify multiple regions of genome 

in which genotype associates with phenotype, implying the presence of trait-related genes 

in these regions (Lander and Schork, 1994).  This method requires no a priori 

assumptions about the number of genes involved or their functions, allows for assessment 

of epistatic interaction of genes, employs phenotypic assessment in mice that may be less 

“abnormal” than mutants (although are certainly not well representative of wild mice), 

and is unaffected by compensation-related confounds.  
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The typical approach to QTL mapping is a time consuming and resource intensive 

process, and the result is the detection of large regions of the genome associated with a 

trait that may contain many hundreds of genes.  Finding the actual genetic basis of the 

QTL has been described as a “long road” (Nadeau and Frankel, 2000) and critics have 

argued that the journey may be futile.  At best, the process of going from a detected QTL 

to knowledge of the underlying genetic polymorphism or even the affected gene(s) is 

sufficiently difficult as to make false positive QTL detection a serious issue.  Alternatives 

and enhancements to QTL mapping have been proposed to increase the precision and/or 

decrease the effort of the process.  Any proposal must be considered with the impact of 

false positives firmly in mind.   

An interesting emerging methodology for QTL detection is in silico mapping 

(Grupe et al., 2001).  This approach capitalizes on known genetic differences between 

inbred organisms to identify QTLs rapidly in a genetically diverse population using a 

rapid computational process, thereby eliminating the need to genotype individual mice.  

However, serious concerns about the present statistical power and error rate of this 

method have been raised (Chesler et al., 2001; Darvasi, 2001).  Though this method has 

been hailed as a significant advance, thorough evaluation is necessary before any 

widespread practical application of the technique is made. 

 
 

3.1.  QTL mapping using experimental crosses 
  
Genetic linkage mapping studies in mice begins with definition of a phenotype, 

determination that it is quantitatively distributed, and demonstration of heritability of the 

trait through phenotypic assessment in a panel of inbred strains.  This has been 
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accomplished for many pain-related phenotypes (Mogil et al, 1999a).  From these “strain 

surveys,” a pair of extreme-responding strains is chosen, and cross-mated to create an F1 

hybrid generation of heterozygotes.  These F1 progeny are subsequently crossed, resulting 

in an F2 hybrid generation in which individuals can be heterozygous or homozygous for 

either allele at any genetic locus.  The phenotypes are assessed in each individual F2 

mouse.  Genomic DNA must then be extracted and amplified at markers known to be 

polymorphic between the parental strains, so that the genotype of each strain can be 

determined at marker loci spanning the genome.  The association of marker genotype and 

behavioral phenotype is determined using a variety of statistical methods that allow 

estimation of the position of quantitative trait loci and/or the magnitude of their effects. 

The present work describes development and evaluation of in silico mapping 

techniques that can be used to identify QTLs using data that comes directly from 

phenotypic study of inbred strains of already-defined genotype at a large number of 

informative markers, thereby eliminating (or reducing) the need for generation of an 

experimental cross.  Such a technique can be employed easily by researchers who have 

greater expertise in the phenotypic evaluation of complex traits than in molecular 

techniques, and takes advantage of more polymorphic information than methods 

comparing only two strains can.  The results can either be used directly prior to candidate 

gene testing or to identify regions in which high-density genotypic analysis of a cross 

should be performed to reduce genotyping expense while increasing precision.   

 
 
3.1.1 Some QTL mapping concerns.  There are several criteria by which novel mapping 

methods can be evaluated, particularly with respect to the way they address some of the 
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drawbacks of performing genetic mapping in experimental crosses.  One of the primary 

motivations for developing computational alternatives to the use of an experimental cross 

is that crosses are expensive and time-consuming endeavors due to the massive amount 

of genotyping that is required.  These practical concerns limit widespread employment of 

a rather useful method to a small pool of researchers.  For a mouse study, over 250 mice 

must be tested for moderately heritable traits (Lander and Botstein, 1989), and 

approximately 150 PCR reactions per mouse must be performed and visualized for 

maximal resolution (Darvasi et al., 1993).  While technology is improving to do this more 

efficiently (e.g., by pooling DNA, and via automated visualization of PCR products), the 

cost is high, and a reasonable amount of technical facility is still required.   

The experimental cross requires generation of genetically unique progeny from 

two progenitor strains, with each phenotypic measure typically taken from a single 

assessment of each mouse.  This makes the method highly susceptible to "phenocopy," 

environmental factors influencing the phenotype in a manner that resembles (and may be 

mistaken for) genetic effects.  It should be noted that while the use of single phenotypic 

observations makes one susceptible to error from imprecise measurement and phenocopy, 

F2 crosses are fairly robust and infinitely high sample sizes are possible for both 

genotypic and phenotypic data to reduce the impact of this problem.  Any alternative 

method to the F2 cross ought to be similarly robust, with results not greatly altered by 

omission of a single phenotypic or genotypic value.  Repeated measures can be used in 

many cases to increase precision of phenotypic measurement, but for some traits, carry-

over effects render this impossible.  Although accounting for the covariance of repeated 

measures can alleviate this problem for some traits, it is often not feasible.  This is a 
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major source of concern in the assessment of behavioral traits, and particularly in the 

influence of drug effects on those traits.  It is conceivable that there exists genetic 

variability in the impact of repeated measure effects, which could mask or exaggerate the 

influence of genetics on the trait of interest.  Experimental crosses also cannot be used 

where measurements from separate control groups are required.  For some traits, only a 

single measure in each individual is possible.  This is true for any pain tests that cause 

permanent tissue damage (e.g., the formalin test), in which there is learning that occurs 

after multiple exposures to the noxious stimulus (e.g., the hot-plate test), or in the many 

traits of interest to neuroscientists that involve group comparisons of measurements made 

through terminal procedures (e.g. anatomical traits).  Using grand-progeny designs 

(Weller et al, 1990), one can improve the precision of phenotypic measurement or 

consider group comparisons where only single observations can be used, but while 

decreasing variability between genetically similar groups this greatly increases the 

volume and complexity of the study because of the increased genetic variability within 

groups.   

A major drawback of experimental crosses is that only those regions that are 

polymorphic between the two progenitor strains can be identified as QTLs.  Using two 

different pairs of progenitor strains in separate crosses each with high statistical power, 

different QTLs have been observed for the same behavioral trait assayed in the same 

laboratory (Hitzemann et al., 2000).  Thus, any mapping system based on only two inbred 

strains, particularly if they are not strains with extreme phenotypes, is likely to under-

report QTL number because some QTLs are not segregating in the mapping population. 
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A benefit of using the F2 cross is that both additive and dominance related genetic 

effects can be estimated because heterozygous mice are present in the study.  In the use 

of methods based on inbred strains, mice are homozygous at every locus, rendering the 

assessment of dominance effects impossible.  This precludes the detection of hybrid 

vigor, in which having one copy of each allele confers an advantage over homozygous 

status at either allele.   

QTL mapping has often been criticized because of its low resolution (Nadeau and 

Frankel, 2000).  Often a 20 centiMorgan (cM) or larger region of genome is identified as 

the QTL confidence interval.  A region of this size can contain large quantities of genes, 

and thus one is left to perform positional cloning or with an excessive number of 

candidates to test.  However, positional cloning requires that the candidate region be 

reduced to approximately 0.5 cM (Rikke and Johnson, 1998).  Part of the resolution 

problem is due to linkage of markers in close proximity, particularly when single-marker 

analyses are utilized.  Results from adjacent markers are correlated in these analyses, 

therefore in regions surrounding the QTL, high associations with the phenotype are also 

observed.  Interval mapping reduces this problem by estimating the likelihood of a QTL 

between pairs of markers, allowing for estimation of both the position and effect of the 

QTL.  Composite interval mapping is a further enhancement, which allows for 

consideration of the effects of background markers that may artificially elevate or 

decrease apparent QTL effects.  Though more sophisticated methods of analysis such as 

interval mapping and composite interval mapping do help to improve resolution, QTL 

confidence intervals are still large.  A substantial increase in sample size, with a resulting 

increase in frequency of genetic recombination can further improve precision, though this 
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is impractical for widespread use and may be subject to diminishing returns.  Other 

approaches to more precisely estimating the QTL position have also been attempted, 

including the use of advanced intercross lines (Darvasi and Soller, 1995), generating new 

congenic strains, or narrowing the possible interval with testing of existing overlapping 

knockouts and congenics containing differing amounts of “hitch-hiking” genetic material 

linked to the region of interest (Flaherty and Bolivar, 2002).   

The required statistical thresholds for QTL mapping techniques involving whole 

genome scans has been the topic of extensive debate, particularly since the publication of 

theoretical minimum logarithm of the odds (LOD) scores by Lander and Kruglyak 

(1995).  The major issue is that mapping techniques by their nature employ multiple tests, 

and the family-wise error rate is thus potentially very high.  However, the typical 

hypothesis considered in the family of tests would be that there is no QTL present in the 

entire genome, a hypothesis of virtually zero probability in a heritable trait.  Thus, 

correcting strictly for the number of tests employed is not appropriate in some cases, 

particularly because tests on linked markers are not independent.  The use of resampling 

techniques, in particular permutation tests, is a widely used error-control technique 

(Churchill and Doerge, 1994).  This technique may be employed to control the marker, 

chromosome or genome (experiment) error rate.  Another approach for controlling error 

rates that has been employed in QTL detection is Benjamini and Hochberg’s (1995) 

procedure to control the false discovery rate (Mosig et al. 2001).  This method is more 

powerful than Bonferroni correction. 

 Reliability of QTL mapping is also a concern.  Although the number of subjects 

in a typical F2 cross allows sufficient power to detect at least one QTL in the whole 
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genome, typical quantitative traits may be determined by several genes.  With minimal 

power, at least one of these may be detected by chance, and the amount of variance this 

single QTL accounts for is generally over-estimated.  A second mapping study in the 

same population may detect a different QTL.  Other non-trivial reasons for the lack of 

replication of QTL studies include differences in polymorphisms present in different sets 

of progenitor strains, epistatic interactions, gene-environment interactions, and 

inconsistent definition of the phenotype (Roubertoux and Le Roy-Duflos, 2001).   

 

3.2.  Alternatives to experimental crosses 

Techniques are in use or under development to address these concerns with and 

limitations of mapping with recombinant crosses.  Several of these techniques involve the 

analysis of haplotypes (genotypes of inbred strains in which both alleles are identical).  

The practical and statistical issues outlined above should be used to assess the value of 

these methods, particularly as they compare to the more commonly employed F2 cross 

approach to mapping. 

 
3.2.1. Recombinant inbred strains.  An inexpensive technique—once the resource has 

been generated—for the preliminary determination of QTL location is the use of 

recombinant inbred (RI) strain sets (see Gora-Maslak, 1991).  In the creation of these 

strains, two inbred progenitor strains are crossed to create F2 hybrids, which are then 

inbred for 20 generations creating a set of inbred strains that feature one or the other 

homozygous parental genotype at each locus.  Because the resulting RI strains have 

assorted genetic material at each locus, the association of genotype and phenotype can be 

accomplished simply by using databased marker information from a previous genotypic 



48

survey of the RI strain panel.  The genotypes and phenotypes are correlated in a point-

biserial fashion at each marker.  Because this method employs mice homozygous at all 

loci, no dominance effects can be identified; only additive genetic effects can be 

estimated.  Single marker approaches such as these have low resolution because of the 

presence of linked markers.  If a marker is associated with a trait, all markers linked to it 

(potentially all markers on the chromosome), will show elevated linkage to that trait.  The 

method also has no ability to resolve linked QTLs in coupling phase (linked increasor 

alleles), and will miss QTLs in repulsion (a linked increasor and decreasor allele).  

Furthermore, the phenomenon of “mirroring” of QTLs—the identification of QTLs at all 

loci that have a common strain distribution pattern, regardless of whether or not the locus 

is linked to the actual polymorphism underlying trait variability—can generate numerous 

false positive results, particularly when the number of strains is limited.  Because the 

markers are not genes, and are typically ‘junk’ DNA, they themselves cannot have a 

biological effect on the quantitative trait.  Thus, the marker itself is not the QTL, and 

because recombination between the markers is not being considered, positional 

information cannot be estimated using single marker analyses.  Power and resolution are 

somewhat limited by the number of RI strains available, and the number of RI strains one 

is willing to test.  However, there is an effort to improve the genetic diversity and 

resolution of the RI resource (Williams et al., 2001), which can dramatically increase the 

utility of this method and reduce genotyping efforts.  Researchers wishing to use this 

resource are practically limited to using existing RI strain sets, given the time and effort 

required to create new ones, and the progenitors of existing sets may not be the extreme 

responders for any particular trait.  Not using extreme responding strains limits the 
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number of large effect magnitude QTLs that can be identified.  Furthermore, as with F2 

hybrids, the alleles of only two strains are considered in RI-aided mapping, so the only 

QTLs that can be identified are those for which a polymorphism between the two strains 

exists.  However, RI strains remain a very useful tool for behavioral genetics, because 

genetically identical individuals can be tested separately in a variety of environmental 

contexts.  Replication studies and comparison studies are also facilitated by the 

retrievability of the genetic resource.   

 

3.2.2. The heterogeneous stock:  A method to increase resolution and account for 

increased genetic diversity  F2 crosses are limited both in their resolution and in the 

number of actual QTLs that may be identified.  This is both because the density of 

themselves markers that one can employ is restricted to those that are polymorphic 

between a pair of strains, and because the genes underlying the phenotype must be 

polymorphic.  One promising technique for increasing the resolution of QTL mapping 

and for allowing the detection of more QTLs through increased genetic diversity is the 

use of a heterogeneous stock, one of which has been established through out-breeding of 

8 inbred mouse strains (Talbot et al, 1999).  In the earliest use of this technique, general 

linear models with allele as a grouping variable were fitted at each marker (Talbot et al., 

1999), but later developments have improved precision through the use of multipoint-

mapping, which takes into account the presence of linked markers and includes 

information about progenitor haplotypes (Mott et al., 2000).  Strictly using the marker 

allele in the single marker approach employed in Talbot et al. (1999) was less successful 

than this latter method because the alike-in-state markers may not have been identical by 
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descent, an important consideration for the development of marker based in silico 

mapping.  Though the HS technique provides greater resolution and genetic diversity 

than a single experimental cross, the approach requires the generation of unique progeny 

and thus necessitates the use of high-density genotyping, and is again not easily amenable 

to the study of traits that require multiple measures from different individuals.   

 
3.2.3. Inbred strain survey-based haplotype mapping. Employing the genetic variability 

and marker density afforded by use of a set of inbred strains, and the use of databased 

marker information, it may be possible to map QTLs in the mouse using only the data 

from inbred strain surveys.  This is because the inbred strains are derived from a small 

number of progenitor strains, for which genealogical information has been well cataloged 

(e.g. Beck et al., 2000).  When strains have like alleles of polymorphic genetic markers, it 

is highly probable that these alleles are of common origin (i.e., identical-by-descent 

[IBD]).  In this case, identical marker alleles are likely to be co-inherited with identical 

gene alleles.  One example, microsatellite markers, are untranslated DNA found 

dispersed throughout the mammalian genome for which primers can be developed, but 

which have varying lengths of DNA between strains.  The microsatellite marker 

polymorphisms have been demonstrated to be related to lineage in that more distally 

related strains have fewer microsatellite alleles in common (Schalkwyk et al., 1999).  

However, the results of Mott et al. (2000) for heterogenous stock based mapping 

demonstrate that this assumption may be problematic, and that it might be necessary to 

incorporate a measure of probability of identity by descent for improved quality of 

mapping from a diverse population.  
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The strain distribution pattern (SDP) of marker genotypes can be used in models 

of phenotype-genotype association.  Such a technique has the potential to be very high 

resolution, inexpensive and rapid.  Because marker-type-specific genotyping methods are 

not required in a computational method using databased information, any type of marker 

or even gene can be used, provided that polymorphisms in a number of inbred strains 

have been identified.  Furthermore, no proficiency with molecular techniques is required, 

making the technique accessible to researchers whose greater expertise lies in the 

evaluation of complex phenotypes.   

 

3.3 Evaluation and further development of “ in silico” QTL mapping methods 

 A variety of different analytic approaches can be used on several existing genotypic 

databases to characterize and identify those methods that are most fruitful.  There are a 

number of aspects to consider:  1) selection of an algorithm, 2) selection of a database or 

combination of databases, 3) potential incorporation of genetic origin information, 4) 

smoothing and visualization of output, 5) appropriate handling of dependent (linked) 

markers, 6) peak detection and significance thresholds.  This is clearly a non-sequential 

process, and much optimization will be necessary to create a viable method of in silico 

mapping.  In the present study, statistical power of two different mapping approaches is 

considered, and methods of peak detection are compared.  Reliability in comparison to 

genome-wide scans based on genetically diverse experimental crosses is evaluated.   
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3.3.1 Two approaches to in silico mapping. Grupe et al. (2001) have recently published a 

method of trait mapping based on the use of the inbred strain distribution of single 

nucleotide polymorphisms (SNPs).  Briefly, pairwise strain differences in genotype are 

calculated for each SNP, and these are summed in 30 cM intervals each shifted by 10 cM.  

This produces arrays of genotypic differences which are then correlated with pairwise 

phenotypic differences.  This method is flawed, and likely not to perform well in practice 

as originally described (Chesler et al., 2001; Darvasi et al., 2001).  It has limited 

resolution because of the large size of intervals created, and is heavily biased by the 

presence of linked markers because genotypic differences are summed over these 

intervals.  Thus, more SNPs in an interval, even with identical SDPs, create the 

appearance of greater genetic diversity in that interval.  This will increase the probability 

of observing a high correlation in that interval, where as in other intervals, correlations 

may be constrained to be low.  This is problematic because a single SNP might be the 

cause of trait related polymorphisms, but will be unobservable if present in an interval 

with constrained correlation.  The creation of overlapping intervals might result in the 

artificial appearance of increasing genotype-phenotype association approaching the 

putative QTL, because of the correlation of analyses between adjacent intervals.  

However, in practice adjacent intervals often have widely disparate results because of the 

bias in observable correlations.   

 A major problem for the use of this technique for behavioral studies is that the 

majority of SNP polymorphisms are between the CAST/Ei strain and all other strains.  

Thus, the bulk of genetic variability considered in this analysis is that of differences 

between CAST/Ei and other strains.  CAST/Ei is not only an outlier in genotype—it is 
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also behaviorally distinct from other mice (Le Roy et al., 1998).  The method is 

absolutely not robust to the removal of this single strain, resulting in catastrophic effects 

on QTL detection.  This occurs because the addition of a single strain results in many 

additional pairs of strain differences.  When an outlier strain such as CAST/Ei is added, a 

large number of high magnitude genetic and phenotypic differences are added to the 

analysis, boosting the potential correlation observable in each interval.   However, this 

lack of robustness can be informative, if one considers that the inconsistency of results is 

indicative of the different sources of polymorphism in the analysis.  CAST/Ei is a wild 

derived inbred strain, and its differences from more recently developed inbred strains are 

reflective of old polymorphisms that may occur in the natural environment.  The later 

developed strains have mutations that might only be viable in the laboratory--potentially 

less relevant to the human polymorphism they aim to model.   

The method proposed by Grupe et al, (2001) also has a very high rate of false 

positives.  The low statistical power of this method is artificially inflated through the 

calculation of pairwise differences resulting in correlations with 22 degrees of freedom 

from a set of only eight strains.  To avoid this issue, a non-statistical approach is 

suggested for the detection of positive results (Grupe et al, 2001).  Although the reported 

validation of the method shows significant agreement with previously published data 

(Grupe et al., 2001) this analysis is biased by heavily unbalanced number of true negative 

results in comparison to the number of false positive, false negative and true positives, 

and further flawed by the determination of significance threshold without consideration 

of the pooling of comparison from many separate studies.  



54

A method that uses allele as a grouping variable in a linear model is theoretically 

more appropriate and meaningful in the context of other mapping methods because the 

assumption that one is testing linear relationships is more likely to be valid.  The amount 

of polymorphism in a region should not be linearly related to the phenotypic difference as 

assumed in Grupe et al. (2001), unless one predicts multiple trait related genetic 

polymorphisms in each interval, each having an equivalent additive effect on the trait.  In 

contrast, using linear models with allele based grouping, the additive allelic effect can be 

estimated from the single marker analyses, but clearly no such relationship can be 

determined from the pairwise-difference approach.  The estimation of this additive effect 

is useful in the assessment of candidate genes, allowing one to determine whether or not 

the effect size of a manipulation is reasonable for the magnitude of effect the 

polymorphism produces.  The allele-grouping based approach herein proposed is also 

advantageous because it is a potentially high-density technique.  At any marker or even 

gene in which at least multiple strains belong to each of at least two genotypes, a group 

comparison can be performed.   

 

3.3.2 Selection of a database.  In silico mapping requires the existence of known genetic 

information across a large number of commonly used inbred strains.  Polymorphism data 

is freely available for a number of strains, shown in Table 9, including a table of over 

6500 microsatellite markers from the MIT Whitehead Genome Center (Dietrich, 1996; 

Copeland, 1993), 128 markers available from a study which included the genotyping of 

four additional strains (Schalkwyk et al., 1999), and 300 microsatellite markers 

genotyped in over 50 strains by Center for Inherited Disease Research (CIDR).  Another 
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marker type for which extensive databased information is becoming available is single-

nucleotide polymorphisms (SNPs).  At present, 2948 SNPs have been mapped by MIT 

(Lindblad-Toh et al., 2000), and an additional set of 500 SNPs have been added by Grupe 

et al. (2001).  Proprietary databases are being created with high density SNP information 

for several inbred strains.  SNPs may be more appropriate for use in these computational 

techniques because they can occur anywhere in the genome, potentially affecting 

phenotype directly by occurrence within enhancer regions, promoter regions or even 

genes.  However, many of the presently identified SNPs are not located in genes, and 

their use in intervals in the pairwise difference method likens them to markers associated 

with trait-relevant polymorphisms.  The CIDR database can be used to investigate genetic 

background, though the resolution expected from this database is limited.  Currently, 

because of the small number of genotyped strains with corresponding phenotypes, it is 

difficult to incorporate genetic origin information into these analyses.  The CIDR 

database has high sample size, but low marker density compared to the MIT database.  

Microsatellites currently offer much higher resolution than the SNP database because of 

this high marker density, but statistical power is low.  Current genotyping efforts will 

increase statistical power even more, and SNPs, once genotyped in a large enough sample 

of mice, could be used as a more relevant source of genetic information.  The use of 

microsatellite-based analysis requires additional assumptions that SNPs will not, namely, 

that markers identical by state are indeed identical by descent, and that the QTLs are in a 

fixed relationship with the markers in all the strains in each study.  Ideally, an optimal 

strain set could be identified, in an effort to minimize the number of strains that require 

phenotypic assessment, while maintaining a high degree of genetic variability.
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Table 9.  Availability of polymorphism information for inbred strains. 
 
 
 

Phenotypic Means Available Marker Information Available 

Strain Morphine 
Analgesia 

Tail  
Withdrawal 

Body 
Weight 

MIT 
Microsattelites 
(6000+ markers) 

Schalkwyk 
Microsatellites 
(128 markers) 

MIT/Roche 
SNP's 
(2848 MIT;  
1441 Roche) 

CIDR 
Microsattelites 
(300+ markers)

101H       * 

129P3/J * * 

 *  * 
C57BL/6J * * * * * * * * * * * * 
C57BR/cdJ       * 
C57L/J       * 
C58/J  *     * 
CAST/Ei    *  * * 
CBA/CaJ   *    * 
CBA/J * * *  *  * 
CE/J       * 
DBA/1J   *    * 
DBA/2J * * * * * * * 
FVB/NJ       * 
I/LnJ       * 
JF1    *    
KK/HlJ       * 
LG/J       * 
LP/J * *  *   * 
LT/SvEi       * 
MOLF/Ei       * 
MOLG/Dn       * 
MRL/MpJ       * 
NOD/LtJ * * * *   * 
NON/LtJ * *  *   * 
NZB/BlNJ       * 
NZW/LacJ       * 
P/J       * 
PERA/Rk       * 
PERC/Ei       * 
PWB     *   
PL/J       * 
RF/J       * 
RIIIS/J  *     * 
SF/CamEi       * 
SJL/J * * * * *  * 
SKIVE/Ei       * 
SM/J * *     * 
SPRET/Ei    *   * 
ST/bJ       * 
SWR/J * *     * 
 

*  * * * 
129S1/SvImJ       * 
129S2/SvPas       * 
129S6/SvEv       * 
129T2/SvEmsJ       * 
129X1/SvJ   *    * 
A/J * * * * * * * 
AKR/J * * * * * * * 
BALB/cbyJ   *    * 
BALB/cJ * * * * * * * 
BDP/J       * 
BTBR +T tf/tf       * 
BUB/BnJ    *   * 
C3H/HeJ * * * * * * * 
C3H/HeN       * 
C3H/HeSnJ       * 
C3HeB/FeJ  * *    * 
C57BL/10J  * * 
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3.3.3 Determining required sample size for in silico mapping.  One of the most important 

issues to consider in evaluating in silico mapping is whether or not sufficient power can 

be achieved to identify QTLs statistically.  With over 7000 ANOVA’s being run in the 

allele-grouping algorithm, controlling the family-wise Τype I error rate for the hypothesis 

of no QTL is a realistic problem, though one that all QTL mapping techniques must 

consider.  At the present time 16 inbred mouse phenotypes for the trait being evaluated 

herein are available.  All of these are in the CIDR database, 8 are in the MIT 

microsatellite database, 8 are in the SNP database and 10 are in the Schalkwyk database.  

Thus, the single marker analyses are being performed with 8 to 16 observations, resulting 

in very low power.  The small number of strains used by Grupe et al. (2001) has been 

criticized as a major flaw in the method.  Darvasi (2001) has estimated that between 40 

and 150 strains would be required, but Usuka et al. (2001) have suggested that this 

calculation is irrelevant to the method employed in the pairwise differences algorithm.  

Because this method employs correlations, Fisher’s R-Z transformation can be used to 

estimate sample size.  Using the transformation,  
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where r is the correlation of the phenotypic and genotypic vectors and N is the number of 

pairwise differences required, the magnitude of a correlation can be transformed into a Z-

score, and used for hypothesis testing and estimation of confidence intervals (Hayes, 

1994).  By determining the Z-score corresponding to an appropriate normal probability 

for controlling Type I error rate, the sample size required to demonstrate correlations 
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significantly different from zero can be found.  The number of strains required can be 

determined from the expression,  

2
)1( −

= NN SSN , 

 where Ns is the minimum number of strains required to generate N pairwise differences.  

Using a family-wise error rate of α = .05 adjusted for 146 comparisons using the 

Bonferroni correction, a per comparison α =0.000342, corresponding to the Z-score 

3.396 was used for these computations.  The necessary sample size for correlations of 

various magnitudes is shown in Table 10.  Note that for the highest correlations once 

could use only 8 or 9 strains.  A major caveat to this approach, which should not be 

ignored, is that it assumes bivariate normality and independent samples.  These are 

violated in the employment of this method, because of the redundant use of data in 

determining the pairwise-differences.  The addition of a single outlying strain, e.g. the 

CAST/Ei strain, will add several-pairwise differences that are of an extreme magnitude, 

all of which are dependent.   

 The sample size requirements for the allelic grouping method are much greater, 

because of the lack of redundant use of data.  However, the assumption of independence 

of observations is more easily satisfied.  The sample size requirement for a two-group 

comparison using allelic-grouping, n, 

( ) ( )( ) ( )
2

22
2/1

2
1

ω
ωαβ −−

≥ − ZZ
n  

is based on the desired statistical power, β, the type I error rate, α, the number of 

statistical tests employed, and the variance accounted for by genotype, ω.  Assuming 

7087 tests, and maintaining a family-wise error rate, α = 0.05, resulting in Z = 4.5076, 



Table 10.  Required sample size for the pairwise difference 
method of Grupe et al., based on Fisher’s R-Z transformation. 

Correlation Z aN # of strains 
0.1 0.100335 1148 49 
0.2 0.202733 284 25 
0.3 0.30952 123 17 
0.4 0.423649 67 13 
0.5 0.549306 41 9 
0.6 0.693147 27 8 
0.7 0.867301 18 7 
0.8 1.098612 13 6 
0.9 1.472219 8 5 

         aN = number of pairwise differences. 

Table 11.  Sample size requirements for the allelic grouping method.
 

 Power (1-β) 

ω2 0.60 0.70 0.80 0.90

0.9 2 2 2 2

0.8 3 4 4 5

0.7 5 6 7 8

0.6 8 9 10 12

0.5 12 13 14 17

0.4 17 18 22 25

0.3 27 30 34 40

0.2 46 51 58 68

0.1 102 113 129 151
 

Table 12.  Sample size requirements for the allelic grouping 
method  using the formula n = Z2

1-α/2/ω2.   

 Power (1-β) 

ω2 0.60 0.70 0.80 0.90

0.9 26 29 32 38

0.8 29 32 36 42

0.7 33 36 41 48

0.6 38 43 48 56

0.5 46 51 58 68

57 64 72 84

0.3 76 85 96 112

0.2 114 127 144 168

0.1 227 254 287 335
 
 

0.4
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the number of strains needed in each group for various values of β and ω are in Table 11.  

More strains are required for the majority of markers, in which typically three or more 

groups are being compared.  Darvasi (2001) estimated that inbred strain based analyses 

would require far more strains using the formula n = Z2
1−α/2/ω2 as shown in Table 12.   

 

3.3.4 Peak detection.  Several methods of peak detection may be employed.  Presently, 

neither method has high statistical power for attaining significance thresholds for most 

QTLs using a single-marker (allele-grouping) or single-interval (pairwise-difference) 

analysis corrected to maintain a genome-wide error rate of 5%.  Grupe et al. (2001) 

considered the top 5 to 20% of obtained results as peaks.  This is arbitrary but has the 

dubious merit of identifying some number of QTLs, whereas other techniques of error 

control can potentially identify no QTLs.  As mentioned, the latter case has virtually no 

probability of being true for a heritable quantitative trait.  Permutation analysis applied to 

QTL mapping by Churchill and Doerge (1994), in which the Type I error rate is 

controlled based on empirically derived significance levels, rather than from a theoretical 

distribution that may not be obtainable for the actual data.  This non-parametric approach 

to error control is particularly useful in situations where the theoretical distribution of the 

test statistic is unknown or when assumptions of normality are seriously violated.  For 

this method, to control the Type I error rate at α, the value of the test statistic exceeded 

by the top α% of permutation results is the significance threshold.  This can be 

implemented at each marker or interval, by first 'shuffling' the phenotypes, then 

subjecting each 'shuffle' to the mapping algorithm, alleviating some of the bias due to 

uneven statistical power at markers in the allelic grouping method, and correlation 
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constraint in the pairwise-differences method.  For each shuffle, the best result obtained 

across the genome can also be used to determine the genome wide significance threshold.   

Peaks can be identified either as those locations where the genome wide threshold is 

achieved (although this will be biased by the linkage of SDPs capable of generating 

higher power) or as those locations in which a particular comparison-wise threshold is 

exceeded.  The comparison-wise threshold can be adjusted to control for the number of 

comparisons tested.  It may be appropriate to also shuffle genotypic results as is done for 

permutation analysis of F2 crosses.  However, these are not experimentally derived in the 

present analysis, and many non-existent strain distribution patterns will be tested in such 

a shuffle, thus extending the permutations beyond the possible results obtainable.  The 

necessary number of permutations required for calculation of a stable significance 

threshold can also be determined.  Because of the small number of phenotypes in the 

analysis, it may be feasible to generate all possible results and determine the exact p-

values rather than shuffling randomly.   

Bonferroni adjustments of the comparison-wise permutation threshold or use of a 

genome-wise permutation threshold can control the family-wise error rate, thus reducing 

the large number of false positives expected due to multiple testing.  An alternative 

method for dealing with the multiple testing problem and identifying significant results is 

to control the false discovery rate (Benjamini and Hochberg, 1995).  Controlling this 

error rate is more powerful than using the Bonferroni correction, thus decreasing Type II 

errors, and is the most relevant for the QTL mapping concern of reducing the 

consequences false detection.  This method can be applied to determination of 

significance thresholds based on the permutation adjusted p-values.  To control this error 
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rate, the p-values are sorted in ascending order, and all hypotheses are rejected for which 

i is less than or equal to the maximum value of i satisfying the inequality 

q
m
ipi ≤  

where pi is the ith sorted p-value, m is the total number of hypotheses being tested and q is 

the false discovery rate desired.  Note that this assumes independence of the tests, an 

assumption that is violated here. 

 

3.3.5 Smoothing.  Smoothing may aid in the visual detection of peaks, though much 

information can be lost in the process of smoothing, particularly when results are 

combined across correlated statistical tests without regard to that correlation.  However, 

the graphical display of mapping results might provide insight and intuitive appeal to 

some users of these methods.  Grupe et al. (2001) achieved this smoothing prior to the 

analysis by taking a measure of the 'amount of polymorphism' present in a region of 

genome.  As discussed previously, this may not be appropriate.  Smoothing the results 

after the analyses are performed may be a superior way of considering the results of the 

many tests within a cM position of genome, or across small highly linked regions of 

genome.  This post-analysis smoothing could give a sense of the average association 

between genotype and phenotype in a region.  Such smoothing must be able to take into 

account two problems:  the unequal dispersion of markers, which, if not considered will 

result in averages containing points that are increasingly unrelated as inter-marker 

distance increases, and the presence of linked markers, which can increase the weight of 

the result at the linked markers artificially.  The former problem can be dealt with 

through dispersion weighted smoothing, and the latter problem can be dealt with by either 
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weighting each SDP in a region equally, or by culling the marker database to remove 

markers within a region that have the same SDPs.  With these concerns in mind, it seems 

preferable to consider each point individually, rather than pool results of the adjacent 

marker statistical tests through smoothing schemes.   

 

3.3.6 Evaluation.  In order to evaluate the success of a mapping algorithm, a trait for 

which there exists complementary inbred strain survey data and QTL mapping studies in 

genetically diverse populations is required.  Though the goal of this work is to develop a 

mapping method suitable for the study of behavioral phenotypes, particularly those 

pertaining to pain, it may not be desirable to evaluate the method using existing studies 

because of the small number of studies employed to date and because of the relatively 

low genetic diversity represented in these studies.  One trait that has been extremely well 

characterized in the mouse is body weight, with inbred strain phenotypic data available 

from the mouse phenome project (The Jackson Laboratory, 2000) and QTL mapping 

results from numerous line crosses (e. g. Brockman et al., 1996; Brockman et al., 2000; 

Cheverud et al., 1996; Cheverud et al., 2001; Kirkpatrick et al., 1998; Moody et al., 

1999; Morris et al., 1999; Keightly et al., 1996; Rance et al., 1997; Vaughn et al., 1999), 

including perhaps one of the most detailed mapping study ever undertaken  (Cheverud et 

al., 1996; Cheverud et al., 2001; Vaughn et al., 1999), with many QTLs identified for 

each of many traits in a cross of the inbred selected lines LG/J and SM/J.  However, 

consideration of only a single cross is insufficient.  One of the important issues in 

evaluating in silico mapping is that it takes advantage of a high amount of genetic 

polymorphism, and if this genetic diversity is not reflected in the comparison QTL 
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mapping studies, the rate of false positive results generated by in silico mapping may be 

grossly over-estimated.  

The statistical comparison of these two methods with each other and with 

previous findings is a difficult matter.  Ideally, each can be evaluated for their relative 

success at mapping mouse body weight relative to previous F2 crosses using Fisher's 

exact test or the chi-square approximation.  However, each method generates very 

different output and is based on differing numbers of statistical tests.  It is not readily 

apparent how to compare 7000+ single marker analyses, the overlapping intervals 

computed in Grupe’s method and hypothetically infinitely dense genome-wide scans used 

for interval mapping in the F2 cross.  Using the QTL confidence intervals (CIs) from the 

F2 cross QTL is one possibility, for which the estimation of false positives (QTLs outside 

the CI), false negatives (no QTL present in the CI), and true positives (QTL inside the CI) 

is trivial, but the estimation of true negatives is problematic.  One method is to divide the 

genome into some arbitrary number of intervals approximately the size of a typical QTL 

CI, and determine whether or not a QTL is present in that interval for each method.  

However, this method is somewhat problematic in that single marker results have 0.1 cM 

resolution, but are linked to QTLs some unknown distance from the marker.  The size of 

the region around a single marker result that should be considered “positive” is a 

subjective matter.  Another method is to look at single-marker results for each algorithm 

at the F2 cross QTL peak.  This assumes presence of a single marker at the QTL location 

or near it with sufficient polymorphism in the SNP and microsatellite strain sets, neither 

of which contain the strains used in the comparison F2 cross, and furthermore is not a 

faithful representation of Grupe's (2001) method.  The latter approach also does not 
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include the high proportion of true negatives in the analysis, and is flawed in the 

assumption that all and only QTLs found in the previous mapping studies work are true.  

Localization of QTLs to the correct chromosome alone can assist in the selection of the 

relevant consomic/congenic strains, and this criterion should also be considered.  In 

selecting evaluation criteria, it is imperative to consider how the method is likely to be 

used in practice; that is to ask, “Would the output obtained lead the researcher to 

correctly continue evaluation of a region of the genome containing a QTL based on the 

data, with a minimum of wasted effort?”  Many approaches to the comparison of these 

methods may not address this.  For example, in the event of single marker results lying 

just outside a QTL confidence region, this false positive in the strictest sense would be of 

little practical consequence, particularly when considering that the size of these regions is 

often under-estimated and may be distorted by scaling of diverse studies to a single 

marker map.  In another example, when multiple adjacent results are identified as 

exceeding thresholds, the outer results, which may also be false-positives, would again be 

of little consequence because follow-up research would focus on more central regions of 

the identified segment of the genome.   

   

3.4 Methods for development and evaluation of a mapping application. 
 

3.4.1 Source data.  Genotypic data.  Genotypic data was obtained from three 

databases containing microsatellite polymorphisms between strains.  Because the three 

data sets had slightly different strains represented and each affords different resolution 

because of the number of markers it contains as shown in Table 9 (Dietrich et al., 1994, 

http://wwwgenome.wi.mit.edu/genome_data/mouse/mouse_index.html; Schalkwyk et al., 

http://wwwgenome.wi.mit.edu/genome_data/mouse/mouse_index.html
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1999; http://www.mpimg-berlin-dahlem.mpg.de/~rodent/bin/polymarkerleo.cgi; Center 

for Inherited Disease Research, http://www.cidr.jhmi.edu/mouse/mouse.html).  SNP data 

was derived from two sources, Massachusetts Institute of Technology  (Lindblad-Toh et 

al., 2000; http://waldo.wi.mit.edu/SNP/mouse/) and Roche Pharmaceuticals (Grupe et al., 

2001; http://mousesnp.roche.com/cgi-bin/msnp.pl).  These databases have been merged 

and are freely available in a single flat-file format (Williams, 2001; 

http://www.nervenet.org/main/dictionary.html). 

The data included in these analyses need not come from a single source, or be of a 

particular marker type.  However, the positions of markers are often relative to others in 

the same set, and vastly uneven statistical power results from the different databases 

rendering peak detection more difficult in combined datasets with vastly different sample 

sizes.  Thus, the databases will be considered separately from the one another for some 

purposes. 

Phenotypic data.  Individual strain weights have been determined by The Jackson 

Laboratory (Bar Harbor, ME) for a large number (n=40) of mice of each of several strains 

(Table 9), all fed the same diet. These data were obtained from the Mouse Phenome 

Database (The Jackson Laboratory, 2000).  Body-weight and growth related phenotypes 

are available for mice aged 3 weeks through 9 weeks.  The majority of the evaluation was 

performed for body weight at week 6, a trait that has been mapped in several different 

and genetically diverse crosses  

 
3.4.2 Model implementation.  The models under consideration at the present time are the 

allele grouping approach, in which strains are grouped by marker allele at each marker, 

and the pairwise-difference approach in which the amount of polymorphism in a region 

http://www.mpimg-berlin-dahlem.mpg.de/~rodent/bin/polymarkerleo.cgi
http://waldo.wi.mit.edu/SNP/mouse/
http://mousesnp.roche.com/cgi-bin/msnp.pl
http://www.nervenet.org/main/dictionary.html
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of genome is correlated with the amount of phenotypic difference.  For the allele 

grouping method, the linear model 

y bik i ik= + +µ e
 

was fit for each marker using SAS (v. 8.2, The SAS Institute, Cary, NC) where the 

phenotype strain mean yik for the kth strain of the ith allele class, as a mean value plus an 

allele effect, bi, and a residual error eik,   

The p-values resulting from each of these analyses were plotted against the 

centiMorgan (cM) position of each marker.  It should be noted that the actual location of 

some of these markers is not agreed upon in the three microsatellite databases, nor are the 

allele polymorphism groupings for some microsatellite markers.  However, rather than 

decide which markers were most accurately typed and placed, these redundant markers 

were all included in the analysis.  The resulting genotypic data set includes 7,087 

markers, although it is anticipated that some of these markers will be unusable because of 

missing marker data for strains with known phenotype, markers localized to a 

chromosome, but not to a specific position, and a lack of sufficient correspondence of 

allele polymorphism distribution with strain survey data such that modeling results are 

defined.   

The pairwise-difference algorithm described by Grupe et al. (2001) was also 

implemented in SAS (v 8.2 The SAS Institute, Cary NC) making use of the full set of 

SNPs and performing the permutation analysis.  A Microsoft Excel implementation is 

freely available from www.nervenet.org/xlfiles/SNP/CheslerSNPMapper.xls with the 

CAST/Ei strain omitted from the analysis.  Briefly, absolute phenotypic differences are 

http://www.nervenet.org/xlfiles/SNP/CheslerSNPMapper.xls
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calculated for each possible pairing of strains.  Genotypic differences are scored 1 for 

same and 0 for different at each locus.  These differences are summed within 30 cM 

regions of genome, with each interval starting every 10 cM apart.  The absolute 

phenotypic differences, P, with elements pi, are correlated with the interval sum of 

genotypic differences at each locus, GL , with elements gi, as follows:  
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are the means of the elements of the vectors of phenotypic difference and 

genotypic difference at each locus (Grupe et al., 2001).  These correlations are 

standardized and plotted for each interval.   

Permutation analysis was performed in SAS IML for both mapping methods.  

Missing observations were first removed from the phenotype vector, and genotypes for 

which no phenotype was present were also vetted.  Missing values in the genotypic 

marker databases remained.  The phenotypes were then shuffled using ranked pseudo-

random numbers.  The best p-value obtained for each marker database was retained to 

establish genome-wise significance levels, and a count of the total number of times the 

observed p-value from the actual data exceeded the p-value for the shuffled phenotypes 

was also maintained.  Exact comparison-wise adjusted p-values were reported, and 

thresholds for various genome-wise significance levels were also reported by marker 

database.  The number of permutations required to obtain stable p-values was roughly 
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estimated by running four independent sets each of various numbers of permutations.  

The mean and standard error of the genome-wise permutation p-values was evaluated for 

each quantity of permutations.  Control of the false discovery rate was also performed, as 

described above.   

 
3.4.3 Defining the comparison QTLs for reliability analysis.  Many studies of body 

weight and related phenotypes have been performed in a diverse group of mouse strains 

and using a variety of methods for mapping and reporting.  Studies were identified using 

both a PubMed search for ‘[body weight or obesity] and QTL’ and a search of the Mouse 

Genome Database (Blake et al., 2001) for QTLs for the phenotype “All-Growth/Weight 

Abnormality:  Postnatal”.  Unfortunately, curation of the latter database is still in 

progress and only QTLs on chromosomes 1 through 9 are accessible through this query.  

Further studies were identified through the works cited in these sources.  All QTLs were 

initially considered, and the pool was narrowed to the specific phenotype for which strain 

survey data was available and for which the largest amount of genetic diversity in the 

mapping study populations existed, body weight at week six.  QTLs in these studies were 

detected and reported using a variety of procedures, not all of which were directly 

comparable.  All published QTLs for body weight at week six are listed in Table 13.  

Only a few of these exceed Lander and Kruglyak’s (1995) proposed thresholds for a 

genome-wide scan.  Thus, QTLs found by genome-wise or chromosome-wise 

permutations and other methods were often reported.  Because each of these studies 

generates a unique marker map based on observed recombinations, all QTLs were scaled 

to the MIT map of the mouse genome (Dietrich et al. 1994). The relative location of the 



Table 13.  All published body weight QTLs for six week old mice 
  QTL 
symbol   Sexa Chrm 

Significance 
Levelb 

QTL 
Position 

Lower  
CI  

Upper   
CI 

Position 
Scaledc 

Lower CI 
scaledd 

Upper CI 
scaled 

 
Progenitors Reference

B 1 0.01ch 16.50 N/A N/A 7.70 centromere 17.70 Lg/J Sm/J Cheverud et al. (1996) Genetics 142:1305-1319. 
B 1 0.10 14.00 N/A N/A 14.00 4.00 24.00 DU6i DUK Brockman et al. (1998) Genetics 150:369-81. 

Wt6q1            B 1 0.10lk 27.00 15 40 18.71 9.90 28.25 selected selected Moody et al. (1999) Genetics, 152:699-711. 
B 1 0.05lk 44.8 N/A N/A 32.04 22.04 42.04 Lg/J Sm/J Cheverud et al. (1996) Genetics 142:1305-1319. 

Bw5          B 1 0.01  36.00 25 51 35.95 23.95 52.32 DU6i DBA/2OlaHsd Brockman et al. (2000) Genome Research 10:1941-1957. 
B 1  84.00 N/A N/A 63.50 53.50 73.50 Lg/J Sm/J Vaughn et al. (1999) Genetical Research 74:313-322. 
B 1 76.00 46 84 72.63 43.95 80.27 selected selected Keightly et al. (1996) Genetics 142:227-235. 
B 1 0.05  56.40 48.88 63.92 73.20 61.40 85.00 C57BL6/J DBA/2J Morris et al. (1999) Mammalian Genome 10:225-228. 

Wt6q2            B 1 0.01lk 108.00 90 123 92.33 80.81 101.92 selected selected Moody et al. (1999) Genetics, 152:699-711. 
B 1 0.05lk 120.10 N/A N/A 99.50 89.50 109.50 Lg/J Sm/J Cheverud et al. (1996) Genetics 142:1305-1319. 

B 2 0.10 56.00 N/A N/A 56.00 46.00 66.00 DU6i DUK Brockman et al. (1998) Genetics 150:369-81. 

B 3 0.05ch 43.00 N/A N/A 27.50 17.50 37.50 Lg/J Sm/J Cheverud et al. (1996) Genetics 142:1305-1319. 

B 4 0.05lk 32.10 N/A N/A 26.03 16.03 36.03 Lg/J Sm/J Cheverud et al. (1996) Genetics 142:1305-1319. 
B 4 50.00 N/A N/A 32.00 22.00 42.00 Lg/J Sm/J Vaughn et al. (1999) Genetical Research 74:313-322.. 
B 4 26.00 24 30 35.71 33.12 40.89 selected selected Keightly et al. (1996) Genetics 142:227-235. 
B 4 0.10 55.00 N/A N/A 55.00 45.00 65.00 DU6i DUK Brockman et al. (1998) Genetics 150:369-81. 

Bw7          B 4 0.10 59.00 34 72 57.63 17.36 78.56 DU6i DBA/2OlaHsd Brockman et al. (2000) Genome Research 10:1941-1957. 
B 4 0.10lk 49.00 34 64 62.51 50.47 95.00 QS C57BL/6J Kirkpatrick et al. (1998) Mammalian Genome 9:97-102.  

B 5 35.00 22 45 14.91 2.40 24.53 selected selected Keightly et al. (1996) Genetics 142:227-235.  
B 5 0.10 42.00 N/A N/A 42.00 32.00 52.00 DU6i DUK Brockman et al. (1998) Genetics 150:369-81.
B 5 60.00 57 64 52.90 52.67 53.21 selected selected Keightly et al. (1996) Genetics 142:227-235.  

Bw13          B 5 0.01 81.00 73 89 66.70 61.28 72.12 DU6i DBA/2OlaHsd Brockman et al. (2000) Genome Research 10:1941-1957. 

B 6 22.00 15 26 11.33 4.43 15.27 selected selected Keightly et al. (1996) Genetics 142:227-235.  
B 6 0.05 70.50 57.0 telomere 51.04 40.44 61.64 C57BL6/J DBA/2J Morris et al. (1999) Mammalian Genome 10:225-228.  
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Table 13.  All published body weight QTLs for six week old mice-continued 
 
         B 6 88.00 N/A N/A 58.96 48.96 68.96 Lg/J Sm/J Vaughn et al. (1999) Genetical Research 74:313-322.  
          B 6 0.05lk 87.00 N/A N/A 55.73 45.73 65.73 Lg/J Sm/J Cheverud et al. (1996) Genetics 142:1305-1319.  
              
          B 7 0.05lk 27.00 N/A N/A 15.02 5.02 25.02 Lg/J Sm/J Cheverud et al. (1996) Genetics 142:1305-1319.  
Bw14          B 7 0.01 28.00 23 33 21.62 17.85 25.38 DU6i DBA/2OlaHsd Brockman et al. (2000) Genome Research 10:1941-1957. 
 B 7        25.00 23 33 23.91 22.08 31.21 selected selected Keightly et al. (1996) Genetics 142:227-235.  
         B 7 50.00 N/A N/A 33.90 23.90 43.90 Lg/J Sm/J Vaughn et al. (1999) Genetical Research 74:313-322.  
          B 7 0.05lk 62.90 N/A N/A 34.37 24.37 44.37 Lg/J Sm/J Cheverud et al. (1996) Genetics 142:1305-1319.  
          B 7 0.05lk 95.20 N/A N/A 58.52 48.52 68.52 Lg/J Sm/J Cheverud et al. (1996) Genetics 142:1305-1319.  
              
         B 8 0.10lk 31.00 N/A N/A 33.90 23.90 43.90 Lg/J Sm/J Cheverud et al. (1996) Genetics 142:1305-1319.  
         B 8 56.00 N/A N/A 40.60 30.60 50.60 Lg/J Sm/J Vaughn et al. (1999) Genetical Research 74:313-322.  
              
         B 9 32.00 12 50 32.67 14.22 49.27 selected selected Keightly et al. (1996) Genetics 142:227-235.  
         B 9 .05ch 37.50 N/A N/A 33.58 23.58 43.58 Lg/J Sm/J Cheverud et al. (1996) Genetics 142:1305-1319.  
         M 9 42.00 N/A N/A 33.90 23.90 43.90 Lg/J Sm/J Vaughn et al. (1999) Genetical Research 74:313-322.  
         B 9 0.10 37.00 22 51 35.02 18.63 50.31 DU6i DBA/2OlaHsd Brockman et al. (2000) Genome Research 10:1941-1957. 
        B 9 0.05 50.30 40.00 telomere 68.90 58.90 78.90 C57BL6/J DBA/2J Morris et al. (1999) Mammalian Genome 10:225-228.  
              
         B 10 0.10lk 80.40 N/A N/A 58.38 48.38 68.38 Lg/J Sm/J Cheverud et al. (1996) Genetics 142:1305-1319.  
        B 10 replicated 84.00 N/A N/A 67.90 57.90 77.90 Lg/J Sm/J Vaughn et al. (1999) Genetical Research 74:313-322.  
              
Bw16          B 11 0.05 14.00 6 17 10.90 0.57 14.77 DU6i DBA/2OlaHsd Brockman et al. (2000) Genome Research 10:1941-1957. 
 B 11         0.10lk 16.60 0 28.3 23.00 0.00 32.15 QS C57BL/6J Kirkpatrick et al. (1998) Mammalian Genome 9:97-102.  
         B 11 36.00 N/A N/A 25.30 15.30 35.30 SM/J LG/J Vaughn et al. (1999) Genetical Research 74:313-322.  
Wt6q3           B 11 0.05lk 36.00 29 49 34.03 26.22 48.53 selected selected Moody et al. (1999) Genetics, 152:699-711.  
Bw4 B           11  0.01 42.00 36 50 42.00 36.00 50.00 DU6i DUK Brockman et al. (1998) Genetics 150:369-81.
Bw4          B 11  0.05 55.00 36 65 53.30 21.00 70.30 DU6i DBA/2OlaHsd Brockman et al. (2000) Genome Research 10:1941-1957. 
 B 11        45.00 29 49 53.59 38.10 57.46 selected selected Keightly et al. (1996) Genetics 142:227-235.  
       B 11 0.10lk 105.50 N/A N/A 80.02 70.02 90.02 Lg/J Sm/J Cheverud et al. (1996) Genetics 142:1305-1319.  
              
Bw9          B 12 0.10ch 17.00 0 50 13.83 1.37 38.03 DU6i DBA/2OlaHsd Brockman et al. (2000) Genome Research 10:1941-1957. 
 B 12        0.10 49.00 N/A N/A 49.00 39.00 59.00 DU6i DUK Brockman et al. (1998) Genetics 150:369-81. 

Continued on next page.



 

Table 13.  All published body weight QTLs for six week old mice-continued 
 

Bw15        B 13 0.05 10.00 3 16 0.00 centromere 5.07 DU6i DBA/2OlaHsd Brockman et al. (2000) Genome Research 10:1941-1957. 
          B 13 0.05ch 7.00 N/A N/A 1.10 centromere 11.10 Lg/J Sm/J Cheverud et al. (1996) Genetics 142:1305-1319.  
Bw10         B 13 0.01ch 47.00 33 61 33.15 20.23 46.08 DU6i DBA/2OlaHsd Brockman et al. (2000) Genome Research 10:1941-1957. 
            B 13 0.05 34.00 N/A N/A 34.00 24.00 44.00 DU6i DUK Brockman et al. (1998) Genetics 150:369-81.
    B 13 86.00 N/A N/A 51.80 41.80 61.80 Lg/J Sm/J Vaughn et al. (1999) Genetical Research 74:313-322.  
    B 13 59.00 29 telomere 56.93 29.93 telomere selected selected Keightly et al. (1996) Genetics 142:227-235.  
              
        B 14 0.00 0 22 0.00 0.00 22.00 selected selected Keightly et al. (1996) Genetics 142:227-235.  
          B 14 0.10lk 62.50 N/A N/A 32.28 22.28 42.28 Lg/J Sm/J Cheverud et al. (1996) Genetics 142:1305-1319.  
    B 14 58.00 N/A N/A 46.10 36.10 56.10 Lg/J Sm/J Vaughn et al. (1999) Genetical Research 74:313-322.  
              
        B 15 0.10 6.00 N/A N/A 6.00 centromere 16.00 DU6i DUK Brockman et al. (1998) Genetics 150:369-81.
     M 15 46.00 N/A N/A 39.90 29.90 49.90 Lg/J Sm/J Vaughn et al. (1999) Genetical Research 74:313-322.  
              
     M 16 14.00 N/A N/A 17.50 7.50 27.50 Lg/J Sm/J Vaughn et al. (1999) Genetical Research 74:313-322.  
    F 16 44.00 N/A N/A 47.50 37.50 57.50 Lg/J Sm/J Vaughn et al. (1999) Genetical Research 74:313-322.  
              
     B 17 14.00 11 18 19.13 16.29 22.92 selected selected Keightly et al. (1996) Genetics 142:227-235.  
              
           B X 0.05lk 23.00 18 28 18.83 17.08 30.45 selected selected Rance et al. (1997) Genetical  Research 70:117-124.  
        F X 0.10 42.00 N/A N/A 42.00 32.00 52.00 DU6i DUK Brockman et al. (1998) Genetics 150:369-81.

 
a. M=Male, F=Female, B=Both 
b. Significance levels were determined by genome-wise or chromosome-wise (denoted ‘ch’) permutation tests.  In the event that LOD scores were 
reported, significance based on the criteria of Lander and Kruglyak for a genome-wide scan is denoted ‘lk’. 
c. Scaling was based on the marker position given by Dietrich et al.  
d. In the event that no confidence intervals were reported, a CI of ± 10 cM was used. 
Italicized significance thresholds indicate replicated QTL.
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QTL to two known bracketing markers was determined from the marker map published 

in the study by dividing the distance between the proximal marker and the QTL by the 

difference between the proximal and distal marker position.  The distance between 

marker loci in the MIT database was then calculated, and the scaled QTL location was 

determined by adding the relative distance to the proximal marker.  Confidence intervals 

were also inconsistently determined and reported, using 1-LOD or 2-LOD drop-offs.  In 

the event that confidence intervals were not reported but sufficient graphical results were 

presented, the 1-LOD drop-off was determined from the graphs as measured with a 

vernier caliper.  In other studies, no confidence intervals were reported, and these were 

arbitrarily assigned to be 10 cM up and downstream of the scaled QTL position.   

3.4.4 Evaluation of models.  The two mapping methods were each evaluated for 

reliability.  This was determined through counts of error rates of each model compared to 

the previously published QTLs identified above using several criteria.   

 
3.5 Results for the evaluation of haplotype based methods 
 

3.5.1. Descriptive statistics for phenotypic data.  Body weight data (Jackson Laboratory, 

2000) is shown in Figure 5.  At week six, the 16 inbred strains used in the present 

analysis have a mean of 22.2, and standard deviation of 2.58.  Weights ranged from 18.96 

to 28.61.  The trait is normally distributed (Shapiro-Wilks W = 0.897, p = 0.0725), and 

thus satisfies model assumptions for the allelic-grouping approach.  For the 8 strains for 

which SNP data were available, a mean of 22.5 with a standard deviation of 2.87 was 

observed.  These body weights ranged from 19.45 to 28.61.  This subset of the 
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A. 

B. 
Figure 5.  a.  Phenotypic data for inbred mouse strains for the trait of body weight at week 6.  
Sex differences are present in this trait, but male and female means were averaged for mapping 
because few sex specific QTLs have been reported.  b.  A histogram of the strain specific 
phenotypes.  Note that the trait is continuously distributed in inbred strains.   
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phenotypic data was also normally distributed (Shapiro-Wilks W = 0.875, p = 0.1694).  

However, because the correlations are being run on the pairwise-differences, it is more 

relevant to consider their distribution.  The 28 pair-wise differences are non-normally 

distributed (Shapiro-Wilks W = 0.892, p = 0.0076), with a mean of 3.19 and a median of 

2.54 and a positively skewed distribution.  The standard deviation is 2.55. 

 

3.5.2 General mapping results.  In the pair-wise differences method, 146 correlations 

were run, with values ranging from -0.331 to 0.800.  These correlations were not 

normally distributed, W = 0.932, p < 0.0001, with a positive skew.  The mean of this 

distribution is 0.05530, with standard deviation 0.22.  The median is 0.01279, and the 

modal value is –0.05856.  Four correlations appear to be strong outliers, over three 

standard deviations from the mean, and an additional correlation is 2.5 standard 

deviations from the mean.  Pairwise-difference results are plotted in Figure 6.   

 In the allele grouping method, 5346 of the markers generated valid results.  For 

remaining tests, missing strains resulted in no variability in genotype for a particular 

marker.  At some markers, the variance accounted for by genotype was high, with ω2 

estimates in excess of 0.90.  These tests often had three or more levels of allele 

represented, resulting in fewer than three strains in each group for the MIT markers. 

Thus, the sample size was insufficient for statistically significant results based on 

Bonferroni adjustments.  Single-marker results for the allelic-grouping method are 

plotted in Figure 7.  
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Figure 6. Genome-wide QTL map for body weight at week six using Grupe et al.'s pairwise 
difference algorithm.  The top panel shows permutation p-values, -Log transformed to facilitate 
comparison with raw correlations, shown in the bottom panel.  Results from each 30 cM 
interval are standardized and plotted against chromosomal position.  Each chromosome 
number is indicated above or below the first interval on that chromosome.   

1

2

3
4

5

6

7
8

9 1 0

1 1

1 2

1 3

1 4
1 5

1 6

1 7

1 8

1 9

2 0

-0 .4

-0 .2

0

0 .2

0 .4

0 .6

0 .8

1

P o s it io n

C
or

re
la

tio
n



77

Figure 7.  Chromosome plots of allelic grouping results for body weight at week six.  Each 
point is a single-marker result.  The heavy black line is a seven-point moving average trend-
line is imposed on each chromosome plot.   Continued on next page.
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Figure 7.  Chromosomse plots of allelic grouping results for body weight at week six-continued.
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3.5.3  Determining the number of permutations required  The number of permutations 

required to obtain stable adjusted p-values was determined by running independent sets 

of 500, 1000, and 5000 permutations of the pair-wise difference method, and 500 and 

1000 permutations of the allelic grouping method.  The experiment-wise permutations 

were stable to four decimal places at 1000 permutations of the allelic grouping method 

and three decimal places at 5000 permutations by the pair-wise difference method based 

on the standard errors observed from four independent runs for each permutation number.   

 

3.5.4 Defined true positive QTLs.  The complete list of previously published QTLs for 

bodyweight at week six is given in Table 13.  From this table, true positives were 

identified based on scaled positions of the QTLs.  These results from previous studies 

were combined at various significance thresholds and listed in Table 14.  The true 

positive QTLs at several significance levels are also plotted in the first column of each 

chromosome in Figure 8. Because eight genome-wide studies were combined, only the 

0.01 per-study criterion controls the Type I error rate at less than 10%.  However, several 

studies did not distinguish between results exceeding the 0.05 and 0.01 experiment-wide 

thresholds.  Furthermore, some QTLs were merely reported as replications, regardless of 

whether the replication was of a weak result exceeding chromosome-wise thresholds or a 

“highly significant” QTL exceeding stringent genome-wise thresholds.  The amount of 

genome covered at each significance threshold was determined.  If all reported QTLs 

were considered, 60% of the genome is a true positive result.  Thus, any result found by 

in silico mapping would have a 60% chance of being confirmatory of previous findings.  
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Table 14.  Coverage of the genome by body weight QTL target regions at different significance thresholds. 

  All QTLs Experiment-wise 0.10 Experiment-wise 0.05 Experiment-wise 0.01

Chrm. Length 
Lower 

Limit 
Upper 

Limit 
Target 
Length

Lower 
Limit

Upper 
Limit

Target 
Length

Lower 
Limit

Upper 
Limit

Target 
Length 

Lower 
Limit 

Upper 
Limit

Target 
Length

1 115.80 0.00 52.32 52.32 9.90 52.32 42.42 22.04 52.32 30.28 23.95 52.32 28.37
  53.50 109.50 56.00 61.40 109.50 48.10 61.40 109.50 48.10 80.81 101.92 21.11
2 105.00 46.00 66.00 20.00   
3 66.70 17.50 37.50 20.00   
4 82.00 16.03 82.00 65.97 16.03 36.03 20.00 16.03 36.03 20.00 16.03 36.03 20.00
    50.47 82.00 31.53   
5 82.00 2.40 24.53 22.13 61.28 72.12 10.84 61.28 72.12 10.84 61.28 72.12 10.84
  40.44 82.00 41.56   
6 66.70 4.43 15.27 10.84 40.44 65.73 25.29 40.44 65.73 25.29  
  40.44 66.70 26.26   
7 67.80 5.02 44.37 39.35 5.02 44.37 39.35 5.02 44.37 39.35 17.85 25.38 7.53
  48.52 67.80 19.28 48.52 67.80 19.28 48.52 67.80 19.28  
8 75.40 23.90 50.60 26.70 23.90 43.90 20.00   
9 69.90 14.22 50.31 36.09 58.90 69.90 11.00 58.90 69.90 11.00  
  58.90 68.90 10.00   

10 76.50 48.38 77.90 29.52 48.38 63.38 15.00   
11 83.10 0.00 83.10 83.10 0.00 83.10 83.10 0.57 14.77 14.20 36.00 50.00 14.00

    21.00 70.30 49.30  
12 60.10 1.37 38.03 36.66   

  39.00 59.00 20.00   
13 59.00 0.00 11.10 11.10 0.00 5.00 5.00 0.00 5.00 5.00  

  20.23 59.00 38.77 24.00 44.00 20.00 24.00 44.00 20.00  
14 69.90 0.00 56.10 56.10 22.28 42.28 20.00   
15 65.60 0.00 49.90 49.90   
16 51.40 7.50 27.50 20.00   

  37.50 51.40 13.90   
17 50.30 16.29 22.92 6.63   
18 39.30     
19 57.90     
X 70.80 17.08 52.00 34.92 17.08 30.45 13.37 17.08 30.45 13.37  

Total 1415.20   847.10 424.28 306.01  101.85
Percent 

Coverage    59.86 29.98 21.62  7.20
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At more stringent thresholds, as little as 7% of the genome is considered (6 QTLs).  

Estimates from the LG/J x SM/J mapping population predict approximately 11 QTLs 

(Cheverud, 1996) comparable to the 12 reported regions at the 0.05 significance 

threshold, covering 21.6% of the genome.  Note that because of the increased genetic 

diversity represented by this collection of studies, it is likely that more QTLs could are 

possible than that predicted by a single cross.  Also, due to lack of specific thresholds 

reported for several QTLs, a few of the QTLs that should be included as exceeding 

genome-wide thresholds were omitted from these lists.   

 

3.5.5 Identifying QTLs using pairwise differences.  QTLs detected by in silico mapping 

were determined using a variety of criteria.  In all cases, adjacent and/overlapping 

intervals were considered to be a single positive result, because in practice these 

additional intervals do not contribute additional information though they do compromise 

precision.  Using Bonferroni adjusted significance thresholds, and maintaining a family-

wise error rate of 0.05, the per-comparison Type I error rate is α = 0.0003 for the 146 

correlations.  Using this strict criterion for peak detection, only the four outlying 

correlations are significant, and these define only three QTLs, one on distal chromosome 

1 in the interval centered at 115 cM, and one on chromosome 5 ranging from 50 to 90 cM 

and one on chromosome 7 ranging from 60 to 90 cM.  This approach resulted in 3 true 

positive QTLs and no false positives (2 true positives and 1 false positive if only the 

targets significant at experiment-wise p < .01 are considered).  However, this approach 

missed 10 QTLs at the experiment-wise p < .05 level, and as many as 23 false negatives 
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Table 15.  Best raw correlations for body weight week six using pairwise-differences.  
 

Top 5% of Correlations 
Chromosome cM Raw Correlation Std. Correlation

1 115 0.77154 3.13462 
5 55 0.60577 2.40913 
5 65 0.76067 3.08703 
5 75 0.80017 3.25992 
5 85 0.48365 1.87467 
7 75 0.75726 3.07213 

11 75 0.49312 1.91612 
X 55 0.42178 1.60391 

    
5-10% Correlations 

Chromosome cM Raw Correlation Std. Correlation
6 35 0.40469 1.52912 
6 75 0.38000 1.42107 
7 65 0.37386 1.39417 

16 25 0.33892 1.24128 
16 65 0.34726 1.27777 
X 45 0.36507 1.35569 
X 65 0.42178 1.60391 

    
10-15% Correlations 

Chromosome cM Raw Correlation Std. Correlation
3 35 0.32271 1.17031 
3 55 0.33253 1.21332 
4 15 0.28295 0.99632 
6 25 0.26485 0.91712 
6 65 0.26319 0.90982 

11 65 0.33247 1.21304 
13 15 0.25238 0.86251 
18 15 0.2652 0.91865 

    
15-20% Correlations 

Chromosome cM Raw Correlation Std. Correlation
1 15 0.24588 0.83409 
3 15 0.23128 0.77020 
3 45 0.25136 0.85806 
4 25 0.23943 0.80585 
6 15 0.24508 0.83060 
6 55 0.23421 0.78302 

11 15 0.25198 0.86077 
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occur when all QTLs from the literature are considered.  Thus, potentially more powerful 

approaches were considered.   

For the pairwise differences algorithm, the top 5%, 10%, and 15% of standardized 

correlations are listed in Table 15 as potential QTLs, as suggested in the original use of 

the method (Grupe et al, 2001).  This approach results in the identification of 5 distinct 

peaks at the top 5% threshold.  Though eight intervals are in the top 5%, several overlap, 

and in practice would contribute no additional information.  However, when compared to 

targets significant at experiment-wise α =  0.01, only two of these are true positives, with 

four false negatives.  An additional two true positives are found in comparison to targets 

significant at α = 0.05 and  0.1, with 9 and 12 false negatives respectively and all results 

are true positives when considered against all known week six body-weight QTLs.   

Using permutation analysis, reasonable experiment-wise significance thresholds 

could not be met unless the Type I error rate was kept at 50%.  However, due to the 

uneven constraint on the correlations at each interval, a by comparison method of error 

control might be more appropriate.  The best peaks by permutation p-values are listed in 

Table 16. Using Bonferroni adjustments to the significance threshold for comparison-

wise permutations, two peaks were again identified, both were true positives except in 

comparison to the experiment-wise 0.01 targets.  The error rates for various significance 

thresholds are shown in Table 17, and graphically compared in Figure 8.  Lowering the 

threshold for comparison-wise permutation adjusted p-values to 0.01 resulted in the 

detection of four true positives, two of which remain true positive in comparison to the 

experiment-wise 0.01 targets.  This resulted in no false positives when all targets, 

experimentwise 0.1 targets or experimentwise 0.05 targets were considered, and two false 
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Table 16. Best permutation adjusted p-values for body weight at week six using pairwise-
differences 
 

Significant at Bonferroni adjusted threshold 
Chromosome   cM   Raw Correlation   Std. Correlation    Permutation P-Value 

1 115 0.77154 3.13462 0.000 
7 75 0.75726 3.07213 0.000 

     
Significant at comparison-wise alpha = .01 

Chromosome   cM   Raw Correlation   Std. Correlation    Permutation P-Value 
5 75 0.80017 3.25992 0.010 
X 45 0.36507 1.35569 0.005 

     
Significant at comparison-wise alpha = .05 

Chromosome   cM   Raw Correlation   Std. Correlation    Permutation P-Value 
5 55 0.60577 2.40913 0.043 
5 65 0.76067 3.08703 0.043 
5 85 0.48365 1.87467 0.026 
6 25 0.26485 0.91712 0.045 
6 35 0.40469 1.52912 0.027 

11 75 0.49312 1.91612 0.043 
16 65 0.34726 1.27777 0.041 
X 55 0.42178 1.60391 0.023 
X 65 0.42178 1.60391 0.023 

     
Significant at comparison-wise alpha = .15 

Chromosome   cM   Raw Correlation   Std. Correlation    Permutation P-Value 
3 15 0.23128 0.77020 0.129 
3 35 0.32271 1.17031 0.063 
3 55 0.33253 1.21332 0.095 
4 25 0.23943 0.80585 0.065 

10 65 0.19816 0.62522 0.149 
10 75 0.19816 0.62522 0.149 
11 65 0.33247 1.21304 0.094 

     
Significant at comparison-wise alpha = .20 

Chromosome   cM   Raw Correlation   Std. Correlation    Permutation P-Value 
1 15 0.24588 0.83409 0.171 
3 25 0.13206 0.33595 0.187 
3 45 0.25136 0.85806 0.172 
4 15 0.28295 0.99632 0.187 
6 15 0.24508 0.83060 0.181 
6 75 0.38000 1.42107 0.190 
7 65 0.37386 1.39417 0.186 

16 25 0.33892 1.24128 0.181 
16 35 0.22464 0.74113 0.187 



Table 17. Comparison of raw correlations and permutations for peak detection in the pairwise-differences method. 
  
 
 
  

 Previously Reported QTLs (Targets) 
 

Raw Correlations 
  

Permutations 
Previously Reported QTLs (Targets) 

 All 0.1 0.05 0.01   All 0.1 0.05 0.01 
Bonferroni αfw=.05 TP 3 3 3 2 Bonferroni αfw=.05  TP 2 2 2 1 

         FP 0 0 0 1 FP 0 0 0 1
       FN 23 13 10 4 FN 24 14 11 5
            

Top 5% TP 5 4 4 2 αcw = .01 TP     4 4 4 2
         FP 0 1 1 3 FP 0 0 0 2
      FN 21 12 9 4 FN 22 12 9 4
            

Top 10% TP 8 6 6 2 αcw = .05 TP     8 6 6 2
         FP 0 2 2 6 FP 0 1 1 5
      FN 18 9 7 4 FN 18 9 7 4
            

Top15%          TP 11 8 8 4 αcw = .10 TP 10 7 7 4
        FP 1 4 4 8 FP 0 2 2 6
      FN 15 7 5 2 FN 16 8 6 2
            

Top 20% TP 12 9 10 5 αcw = .15 TP     11 8 7 4
       FP 1 4 4 8 FP 0 2 3 6
      FN 14 6 3 1 FN 15 7 6 2
            
      αcw = .20 TP     13 9 8 5
          FP 0 3 4 7
         FN 13 6 5 1
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positives when experiment-wise 0.01 targets were considered.  Thus, permutation 

adjusted p-values, even when controlled at the weak comparison-wise criteria of α = 0.05 

generated more true positive results and fewer errors than the consideration of a quantile 

of the best results.  However, the rate of false negatives is still high, with approximately 

half of the known QTLs missed at a threshold of α = 0.15.  When the top 15% of results 

are compared with the 15% permutation adjusted significance threshold, numbers of true 

positives are similar, but again, permutations generate fewer false positive results.  

However, even at this low threshold, many QTLs are missed.  The control of the false 

discovery rate as described by Benjamini and Hochberg (1995) should be more powerful 

than strict Bonferroni correction, but this method is still rather strict.  An FDR controlled 

at 60% gives equivalent results to the 5% permutation threshold for this data.   

 

3.5.6 Identifying QTLs using allelic grouping.  Several different criteria for QTL 

detection by the allelic grouping method were also examined.  This was a bit problematic 

because of the single-marker nature of the results.  In keeping with the notion that these 

methods should be evaluated with respect to the practical information they provide, it is 

reasonable to question how far away from a single marker result one is willing to look for 

a QTL.  However, because virtually the entire genome is saturated with markers, 

significant test results may be present at any point, though they may only be detectible 

where haplotypes permit.  Thus, for this analysis, results just outside a target region are 

not considered true positives.   

Bonferroni adjusted significance thresholds could not be met, either for 

permutation adjusted or raw p-values.  This is in part due to the large number of tests, but 
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even if only the most powerful analysis is considered (the 300 CIDR markers) no single 

marker result reached this stringent threshold.  Experiment-wise permutations were 

problematic because of the small number of observations.  With only 8 observations 

being shuffled, and over six-thousand (though non-unique) strain distribution patterns 

being tested, the same extreme p-value was reached in many of the genome-wide tests.  

So, the Type I error rate could not be controlled at less than 20% for these markers using 

this approach for the MIT markers.  At this genome-wide threshold for MIT markers, 

there were four true positives and one false positive when all targets were considered, 

three true positives and two false positives when the experiment-wise 0.1 targets were 

considered, and no true positives in comparison to the strictest sets of targets.  None of 

the markers in the Schalkwyk database reached the genome-wide threshold of 0.5, and 

only four of the CIDR markers exceeded a permutation threshold of 0.5, with two true 

positive results for all targets and experiment-wise 0.1 targets.  Again, experiment-wise 

permutations do not take into account the uneven statistical power at various markers, 

and thus comparison-wise permutations were studied.  The best peaks identified by 

permutation-adjusted p-values are listed in Table 18. Using a comparison-wise 

permutation adjusted α = 0.001, six peaks were discovered.  Five of these were true 

positives when compared to all targets, but only two of them were true positives when 

compared to the experiment-wise 0.1 targets.  None were true positives for higher 

threshold targets.  Considering a higher threshold, α = 0.01, 20 peaks were found.  For all 

targets there were 14 true positives and six false positives.  For experiment-wise 0.1 

targets, there were six true positives and 14 false positives.  For experiment-wise 0.05 

targets there were three true positives and 17 false positives.  For experiment-wise 0.01 
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Table 18.  Best single-marker results determined by permutation-adjusted p-value for the allele 
grouping method.  

Comparison-wise alpha = 0.001 
Locus Source Chrm cM P-value Perm  P 
D2Mit399,D2Mit399.1,D2Mit399.2 MIT 2 60.1 7E-05 <.001 
D2M148.1 CIDR 2 105 6E-04 0.001 
D4Mit335 MIT 4 54.6 5E-04 <.001 
D5Mit207 MIT 5 37.2 7E-05 <.001 
D8Mit257 MIT 8 6.6 7E-05 <.001 
D8Mit72 MIT 8 35 7E-05 <.001 
D14M127.1 CIDR 14 10 2E-04 <.001 
      

Comparison-wise alpha = 0.01 
Locus Source Chrm cM P-value Perm P 
D1Mit279 MIT 1 25.1 0.119 0.008 
D1Mit18 MIT 1 27.3 0.119 0.008 
D1Mit478 MIT 1 28.4 0.119 0.008 
D1Mit530 MIT 1 31.7 0.119 0.008 
D1Mit176, D1Mit301 MIT 1 32.8 0.119 0.008 
D1Mit510 MIT 1 113.7 5E-04 0.007 
D2Mit303 MIT 2 50.3 6E-04 0.003 
D3M67.1 CIDR 3 28 0.008 0.006 
D3Mit124 MIT 3 40.4 0.119 0.008 
D4Mit308 MIT 4 54.6 0.001 0.008 
D5Mit276 MIT 5 37.2 0.119 0.008 
D7M228.1 CIDR 7 18 0.005 0.008 
D8Mit175 MIT 8 28.4 0.119 0.008 
D8Mit27 MIT 8 35 3E-04 0.002 
D8Mit262 MIT 8 38.3 0.119 0.008 
D8Mit322 MIT 8 63.4 0.119 0.008 
D9Mit244, D9Mit244.2 MIT 9 5.5 0.119 0.008 
D9Mit350 MIT 9 60.1 5E-04 0.007 
D10M96.1 CIDR 10 56 0.002 0.004 
D11M285.1 CIDR 11 52 0.003 0.01 
D11Mit58 MIT 11 60.1 0.004 0.008 
D12Mit97 MIT 12 42.6 0.119 0.008 
D16Mit131, D16Mit142 MIT 16 6.6 7E-04 0.008 
D16Mit4 MIT 16 25.1 0.004 0.002 
D17Mit116 MIT 17 20.8 0.096 0.007 
D18Mit35 MIT 18 15.3 7E-04 0.008 
D18Mit129 MIT 18 37.2 0.046 0.009 
DXMit156 MIT X 56.8 0.096 0.008 
DXM249.1 CIDR X 70.5 2E-04 0.002 
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Figure 8. In silico genome-wide scan for body weight QTLs summarized.   Each chromosome is represented by 5 cM blocks and 
divided into four columns, with positions of known QTLs indicated in the first column (also shown in Table 14), allelic-grouping results 
in the second column (Table 17), pairwise-difference results using percent cut-offs as described by Grupe et al. (2001) in the third 
column (Table 15) and pairwise-difference results using empirical significance thresholds in the fourth column (Table16).  True 
positive results are indicated by overlap of the in silico results (columns 2-4) with the results in the first column.  For a single 
contiguous region, only a single positive or negative result was counted.       
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targets there was one true positive and 18 false positives.  These error rates may be 

artificially high because of the strict criteria that the marker had to be within the target 

region.  For one of several possible examples, a false positive result, D1Mit510, was at  

113.7 cM on chromosome 1, only 4 cM away from the upper bound of the target.  One 

would not be misled in assuming a QTL on distal chromosome 1 based on the result.  

However, definition of the size of the region around a single marker result can be very 

arbitrary, and because numerous tests exist within the target interval, this was deemed 

unnecessary.  Control of the false discovery rate did perform better than the Bonferroni 

adjustment, in that some results were identified as significant, as would be expected from 

the increased power that this produces.  However, error rates are still high, though there 

were 4 true positive and 1 false positive results when compared to all targets, all results 

were false positives when the experiment-wise .05 and .01 targets were considered.  For 

the experiment-wise 0.1 targets there were 3 false positives and two true positive results.   

 

3.6 Discussion of early attempts at developing haplotype based QTL mapping 

"In silico" haplotype-based QTL mapping can obtain some similarity to results of 

F2 crosses.  The technique appears to be capable of mapping with similar precision to 

other techniques, though it currently requires enhancement of power, peak detection, and 

error control.  Empirically derived significance thresholds from permutation analysis 

alleviate some of these concerns and improve error rates to acceptable levels.  If these 

problems can be resolved, this technique will be very beneficial to behavioral geneticists 

because it can be employed rapidly, takes advantage of more polymorphic information, 

and is amenable to the use of separate control groups.  Furthermore, it makes use of data 
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that are typically collected on the way to later mapping studies and can be used to process 

the growing body of phenomic data available for the mouse.   

 

3.6.1 Comparison of the algorithms.  The use of in silico mapping algorithms may prove 

fruitful with enhancements of genotypic resources, but current resources and methods 

provide insufficient statistical power for successful detection of many QTLs.  A more 

rigorous statistical approach to peak detection than that proposed by Grupe et al. (2001), 

particularly the application of comparison-wise permutations, may enhance the quality of 

mapping using the pairwise-difference method.  This non-parametric method of 

performing hypothesis testing performs better than simply considering the top 

correlations,  reducing the rate of false positives relative to the number of true positives.  

The application of permutation tests addresses many of the criticisms of Grupe et al.’s 

(2001) mapping method, particularly those concerns with bias due to constrained 

correlations, the high rate of false positives and the use of arbitrary means of peak 

detection.  Without this or other enhancement to peak detection, the user will be faced 

with an excessive amount of confirmatory research to do.  The low resolution of the 

approach still presents challenges in confirmation, and future efforts can investigate the 

manipulation of the interval size and overlap on resolution.  However, the method does 

appear to correctly identify QTLs when stringent thresholds are applied, and the use of 

consomic and overlapping congenic strains might allow further narrowing of the QTL 

regions identified using this approach.   

It was anticipated that allele grouping would work better than the pairwise-

difference algorithm, and that though the marker density is rather low, the larger amount 
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of strains in the CIDR database would provide more power and thus result in more 

reliable mapping of the trait.  Better performance was hypothesized for allele grouping 

because the linear model employed is more appropriate for this method than it is for 

pairwise-differences.  However, the apparent statistical power of the pairwise-difference 

method is higher due to the redundant use of phenotypes, and results of the allelic 

grouping method were not as good as those of the pairwise-differences method.   

This is in part because of insufficient sample sizes.  The strategy of Grupe et al. (2001) 

for boosting signal to noise ratios with the calculation of pairwise-differences appears to 

be successful in this empirical evaluation.  

 

 3.6.2 Statistical approaches must be employed for peak detection.  The present study 

demonstrates that statistical issues must be considered in the determination of QTLs by in 

silico mapping.  The comment that “because in silico mapping is by definition an 

artificial process, we used artificial methods to make our computational predictions 

(Usuka et al, 2001)” does not excuse the high rate of false positives that can be generated 

when one disregards a statistical approach to detection of positive results, and such an 

approach can only reinforce the creditability issues facing the analysis of complex traits.  

The consequence of retaining such a large number of positive results is an untenable 

amount of follow up study, much of which will be fruitless.  The arbitrary method of 

identifying peaks of linkage generated 15 true positives, 11 false negatives and 24 false 

positives in 10 comparisons reported by Grupe et al. (2001), in other words, 61% of the 

follow up of QTLs identified by this method is likely to result in no QTL detection, 

although due to concerns with a lack of genetic diversity in the comparison crosses, this 
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is likely to be an over-estimate of the error.  Only those QTLs identified by statistical 

criteria appear to replicate previous results with low error and thus a statistical approach 

should be employed.  Those QTLs retained after rigorously adjusting for multiple testing 

are confirmatory of previously identified results, with an acceptably low rate of false 

positives.  More power can be obtained through the use of permutation tests run by 

comparisons, while still controlling the rate of false positives.  With additional strains 

genotyped, this error rate can be improved.  Another technique for statistical threshold 

determination is the control of the relative frequency of false positives (Southey and 

Fernando, 1998), which is somewhat difficult to implement because it requires a priori 

hypotheses about QTL locations.  However, if a database resource for genome-wide QTL 

scans can be created, this information may be obtained from studies of related traits.   

 

3.6.3 Evaluation issues.  It should be noted that only a single trait was evaluated herein.  

Evaluation issues may have affected the apparent success of these methods.  The results 

for allele grouping cover a much smaller portion of the genome than do the results for 

pairwise differences, and the region surrounding each marker that would be considered 

positive in practice needs to be incorporated into the evaluation.  Thus, false negative 

rates may be artificially low and false positive rates may be artificially high for the allele 

grouping method.  Figure 8 shows that there is potentially good reliability with allele 

grouping that may not have been evident in this evaluation.  In several cases where there 

was no linkage observed across large portions of the genome, the allelic grouping method  

and the pairwise difference method both successfully ruled out these regions, including 

proximal chromosome 10, and chromosome 19.   
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Furthermore, the evaluation of these methods was based on a single comparison 

phenotype, and ideally other traits should be used for evaluation of the method.  Clearly 

one should not optimize a method to replicate a single finding, running the risk of 

developing an algorithm that performs poorly on other traits.  An investigation of the 

conditions under which this method works best would be quite useful, possibly 

considering effects of heritability, phenotype distributions, and number of predicted 

QTLs. 

One reason for the disparity between this method and any single mapping study is 

that computational methods employing a full panel of inbred strains are likely to detect 

more QTLs than a single F2 cross.  It has been shown the progenitor strains selected for a 

cross can influence which QTLs are detected (Hitzemann et al., 2000).  This is because 

different crosses have different polymorphic information content at various regions.  

Taking advantage of more genetic diversity will result in more QTL detection.  Though 

many of the strains employed in the present evaluation were selectively bred to be 

extreme strains on body weight, and were derived from divergent sources (Beck et al, 

2000), the genetic backgrounds represented in the in silico methods is different.  The 

increased genetic diversity represented in the strains used in allelic grouping may be in 

part responsible for the disparate performance of this method. 

 

3.6.4 Prospective evaluation is necessary.  The difficulties encountered in the present 

study with attempting meta-analysis of the existing literature and the caveat that the 

strains used in the existing literature are not the strains employed in the in silico mapping 

programs highlight the need for a thorough prospective evaluation of this method.  
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Ideally, a variety of crosses or an HS stock created from the genotyped strains should be 

created and mapped with large sample sizes.  The latter approach will be of considerably 

more value because the marker map that is created will be on a single scale.  The 

proposed evaluation could be done under controlled experimental conditions so that the 

phenotype observed is identical in both the inbred strain survey and the mapping study, 

thereby reducing the impact of gene-environment interaction effects on QTL detection.  

A major limitation of the present study is that body weight is assessed using diets with 

varying fat contents, and genetic differences in weight gain following exposure to fatty 

diets have been documented (e.g. West et al., 1994). Sex specific mapping should also be 

employed if large sex differences in the trait exist.  This was not done here because few 

sex specific QTLs were found in the literature and thus weight data from the sexes were 

pooled in the strain survey, though clearly, strain by sex effects are present in Figure 5.   

 

3.6.5 Genetic resources need to be enhanced.  In order to satisfy the demands for 

increased statistical power, genotyping of SNPs or microsatellites of more strains should 

continue.  A higher density of SNPs can also afford greater precision to these methods, 

and could potentially allow a single marker approach to be employed.  Furthermore, if 

strains are chosen with in silico mapping in mind, the quality of mapping could be 

enhanced.  Several of the present strains with known SNPs are highly similar, including 

Balb/cJ and Balb/cbyJ, or A/J and A/HeJ.    

Concerns with genetic origin effects can also be addressed by increasing the 

number of genotyped strains.  A major assumption in the present analysis is that markers 

identical by state are indeed identical by descent.  This applies to both SNP and 
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microsatellite based approaches because the SNPs are effectively used as markers when 

considered across region, and because so many of the currently known SNPs are present 

in “junk” DNA.  Another assumption is that the QTLs are in a fixed relationship with the 

markers.  However, at some points in the generation of these inbred strains opportunities 

for recombination arose, and thus similarity of markers does not necessarily mean 

similarity of linked QTLs.  This may be alleviated by incorporating some weighting by 

the relatedness of strains either from radiation hybrid mapping or from the use of lineage 

charts to develop a coefficient of relationship that can be included in these analyses.  The 

more precise determination of these values from breeding records is on the horizon (Beck 

et al., 2000).  The large number of strains in the CIDR database may provide sufficient 

statistical power to evaluate the utility of incorporating genetic origin information; 

however, phenotypic data is not available for all the strains in this database for the trait to 

be considered (Table 9).  Most of the commonly employed inbred strains are from either 

Swiss-derived or Castle-Lathrop stock, although a further complication with this analysis 

is that several strains are of isolated or unknown origin (Beck et al., 2001). 

A major concern with in silico mapping is the accuracy and precision of the 

positional information in the genotypic data.  The MIT database used was created using 

very few assays, has a lot of missing information, and has positional information which 

has on more than one occasion been demonstrated to be inaccurate.  Typically, in 

performing QTL mapping, a high sample-size determination of marker position based on 

the cross genotypes is performed to establish more accurately the marker locations.  In 

order for viable computational mapping to be performed, the accuracy of databased 
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genotypic data must be enhanced.  This is in progress, and as genome assemblies are 

completed, the exact locations of marker DNA will be known.  

 

3.6.6 The need for realistic QTL reporting standards.  Major difficulties in performing 

meta-analysis of previously reported QTLs were encountered in the present study.  

Though reporting guidelines have been made (e.g. Lander and Kruglyak, 1995) these are 

considered too stringent and are not often employed in practice.  To date, no consensus 

exists on the reporting of QTLs, and the lack of confirmation of genetic polymorphisms 

underlying QTLs has made publication of QTL studies difficult, leading to a file-drawer 

problem.  Reporting standards are essential for the combination of QTL data for 

emerging methods, including evaluation of sub-phenotypes, and for evaluation of novel 

mapping methods such as the one attempted here.   

 

3.6.7 The need to employ multiple strains in QTL mapping studies. The present study 

illustrates the need to consider multiple crosses in the identification of QTLs.  Those 

identified in a single study only explain polymorphism in a limited population.  However, 

using multiple crosses, far more QTLs are identified (Hitzemann et al. 2000).  The 

ultimate goal of QTL mapping is to identify the sources of genetic variability underlying 

a trait.  While a single cross may lead to a limited number of QTLs, many important 

genetic factors can be missed, rendering the analysis of the trait incomplete.   

 

3.6.8 Future directions for in silico mapping.  Though only two major approaches to 

mapping were compared here, many variations and combinations of approaches to in 
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silico methods are possible.  In particular, use of the pair-wise difference method is not 

necessarily restricted to the SNP database, and allele grouping is not restricted to the 

microsatellites.  Furthermore, the pre-analysis smoothing of the SNP database need not 

be performed to implement the pair-wise difference algorithm, nor must the use of such 

smoothing be restricted to this method and database.    

Once a satisfactory model has been developed and validated through comparison 

to existing mapping methods, its application to pain related phenotypes could commence.  

Pain-related phenotypes for which QTLs have been identified and for which strain survey 

data exist include morphine analgesia (Kest et al., 1999), and formalin pain sensitivity 

(Wilson et al., 2002).  Although the pairwise difference approach emerged as superior in 

this analysis based on its better ability to detect previously reported QTLs, the allelic 

grouping approach has some theoretical advantages that may make further study fruitful.  

In particular, it is feasible to fit more complex models including interaction effects or 

multiple trait models using an allelic grouping approach.    

Though it requires substantially more power, a potential application of the allelic 

grouping method  of "in silico" mapping is for the identification of genes responsible for 

individual differences in all of the phenotypes in a group of correlated traits.  Not only 

have pain related phenotypes been determined to be heritable; study of the genetic 

correlation between these traits indicates common genetic mediation.  We now know that 

there are categories of related pain phenotypes that cluster based on stimulus category.  

The thermal pain traits appear to have a common mediation, as do the 

chemical/inflammatory (Mogil et al., 1999b).  For analgesia, a number of different drug 

classes appear to show surprisingly high genetic correlation, implying the existence of  
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“master analgesia genes” (Wilson et al., 2002).  Such genes may play a role in the general 

phenomena of pain and analgesia, unrestricted to a single modality or neurochemical 

system.  Several categories of pain have been identified (Mogil et al., 1999b) through 

multidimensional scaling (MDS), and these traits may be mapped simultaneously to 

identify genes underlying sensitivity to correlated traits.  Though multiple trait mapping 

is possible from F2 crosses, “in silico” techniques offer a tremendous advantage in that 

they can be used to perform analyses in which multiple measures are taken in separate 

though genetically homogenous individuals.  Thus, concerns typical to behavioral 

experiments such as carry-over effects from repeated testing can be eliminated.  Further, 

strain means are far more precise estimates of trait values than individual observations.   

Strain-specific environmental effects are an example of traits that require multiple 

measures in different testing contexts, and that while clearly of consequence, are not 

established sufficiently to generate interest in an experimental cross.  The magnitude of 

sex differences, experimenter induced effects, and sensitivity to effects of within-cage 

testing order, crowding, circadian factors, humidity and seasonal effects have been shown 

above to differ between strains.  Strain differences in sensitivity to the environment may 

be traits that are conducive to genetic mapping.  They can ultimately be used for 

identification of the genes that underlie the influence of these environmental factors on 

sensitivity to pain.  Essentially, this analysis can find genes that "transduce" 

environmental influence into individual differences in behavior.  Using estimated 

environmental effects in the inbred mouse strains, mapping of the QTLs that underlie 

susceptibility of the trait to these environmental factors can be performed in silico.  Some 

of the neurochemical substrates have been identified for these environmental influences 
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on behavior, and could be the source of individual differences in their effects.  For 

example Daniels et al. (2000), has shown that overcrowding is anxiety provoking, and 

results in a decreased number of serotonin 5HT-1 receptors in rats. Restraint stress has 

been shown to alter neurotransmission for several biogenic amines, and 

acetylcholinesterase activity (Sunanda, 2000).  Based on these findings, one may predict 

that genetic variation in 5HT-1 receptors may result in differential sensitivity to crowding 

stress, and that differences in the identified aminergic systems may result in a differential 

effect of restraint stress.  Kavaliers and Hirst (1983) have shown that two different mouse 

strains show different patterns of circadian effects, and this may be related to albinism.  

Thus, one would predict that some association with coat color genes (or retinal 

degeneration genes) might be present for this environmental influence.   
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4.  Conclusion: Using Inbred Strains to Characterize Individual Differences 

Though they have been viewed as a somewhat unsophisticated resource for 

modern genetic analysis, the existing inbred strains can provide a wealth of information 

for the understanding of individual differences because of their fixed genotypes and the 

relationship that the strains share with one another.  These mice are generally used to 

identify heritability of traits, as specific disease models, as mutant background strains, or 

as progenitors in genetic mapping studies.  Because a large number of mice of identical 

genotype can be tested in a variety of contexts the role of the gene-environment 

interaction can also be investigated in these strains.  The application of modern data-

mining methods to large-scale phenotyping projects can generate a wealth of information 

about environmental effects on these traits, particular with regard to laboratory factors 

that may impact results generated when data from multiple sites are considered together.   

The role of the laboratory environment on the genetic study of complex traits, particularly 

of behavior, can and should be defined.  This is especially necessary as large-scale 

projects such as the Mouse Phenome Project attempt to associate results from multiple 

labs using phenotypic data from inbred strains, and the environmental data associated 

with many of these phenotypes is available (Bogue, 2002). 

Furthermore, the utility of these strains may be greatly enhanced as the advance 

from the sequencing of their genomes to annotation and beyond is made.  The data 

generated in large-scale genomics projects has made possible the use of inbred strain 

resources to understand the genetic basis of complex traits.  Associating inbred strain 

differences in genomic data with phenotypes is an emerging use of bio-informatics 

resources, and enhancement of these ‘in silico’ trait-mapping methods can make them 
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reliable enough to be used in common practice.   This can be especially beneficial in 

enabling non-geneticists to take advantage of the power of genetic methods in the study 

of complex traits.  For the geneticist, these techniques can be used optimize selection of 

progenitor strains for genetic crosses, reduce genotyping effort and expenditure, or, if 

sufficiently enhanced,  even lead to direct candidate gene testing from the inbred strain 

survey, thereby completely eliminating the need for genotyping.  However, it is hoped 

that the development of tools to process genomic and phenotypic databases will allow a 

wider variety of biologists to benefit from the results of genetic analysis.   

Recently, emphasis has been placed on achieving medical research goals through 

the use of genetic mouse models.  A more thorough understanding of the genetic and 

environmental influences occurring in these studies is required for promising application 

of the results.  Together, this work demonstrates two ways in which inbred strains can be 

used in the characterization of individual differences in complex traits that have been or 

can be applied to pain related phenotypes.  The understanding gained from the study of 

individual differences in pain is the first step toward development of bio-behavioral pain 

therapies tailored to individuals suffering from a variety of pain conditions.  However, 

pain related phenotypes are but one example of the possible applications of these efforts. 
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