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Abstract—A three-dimensional wavelet-based algorithm for including modeling one subject as an elastic deformed version
nonlinear registration of an elastic body model of the brain is of another. For example, Duchon [4] and Meinguet [5] intro-
developed. Surfaces of external and internal anatomic brain duced the thin-plate splines (TPS) algorithm as a mathematical

structures are used to guide alignment. The deformation field . . .
is represented with a multiresolution wavelet expansion and is interpolator. Later, Goshtasby [6] and Bookstein [7] applied

modeled by the partial differential equations of linear elasticity. this interpolator to two-dimensional (2-D) image registration.
A progressive estimation of the registration parameters and the Gabrani and Tretiak [8], [9] extended Bookstein’s method
usage of an adaptive distance map reduce algorithm complexity, to 3-D image registration. Since then many extensions and
thereby providing computational flexibility that allows mapping improvements to Bookstein’s TPS-based registration method

of large, high resolution datasets. The performance of the algo- .
rithm was evaluated on rat brains. The wavelet-based registration "2ve Peen proposed [10]-{12]. Johnson and Chirstensen [10],

method yielded a twofold improvement over affine registration. ~ for instance, have proposed a consistent TPS image registra-
tion method that is landmark and intensity based, in which

consistency is maintained between forward and backward trans-
formation. Briefly, in the TPS method the image is modeled as
a metal plate in which landmark points are deformed in each
. INTRODUCTION direction separately. Coefficients of radial basis functions that

HREE-DIMENSIONAL (3-D) image registration is es-interpolate the deformation are computed such that an elastic
T sential in various computer-vision tasks and as such hH@Rergy functional is minimized. . _
been intensively investigated over the past decades. Registrdl contrast to the mathematical thin-plate approach, the
tion has been applied to many applications including 3-D rdlavier linear partial differential equation (PDE) is a physical
construction, surveillance operations, efficientimage/video refiodel of nonlinear elastic deformation. The Navier PDE
resentation and retrieval, and medical imaging, albeit with diftodeling of organ tissues as an elastic object, adopted from
ferent registration techniques and with different performance @ntinuum mechanics, considers the organs as elastic media
quirements. In medicine, image alignment is used to fuse cobhat are exposed to external forces and are smoothly deformed.
plementary information in order to improve visualization of reBajcsy and Kovacic [13] and Broit [14] were the first to apply
gions of interest for clinical or research purposes. A survey biavier PDE to registration. In their method an equilibrium
various medical image registration techniques can be foundSite between external and internal forces was reached for an
[1]-[3]. isgtrop?c homogeneous body. The external_ fqrcgs were deter-
A common biomedical problem where image registratioW'“?d in such a way that an image-based similarity metric was
has been employed is in mapping newly acquired experimerfa@ximized.
datasets onto a reference atlas. Registration in this case faAnother approach uses deformable objects, either parametric
cilitates automatic segmentation. Alignment of biomedic&" level-set-based methods, to track a large nonlinear defor-
intersubject images requires a registration algorithm that wiltation [15]-{19]. For example, Davatzikos and Prince [17],
compensate as much as possible for geometric variabill8l: used a deformable surface parametric representation of
among individuals. Numerous methods that account e brain’s external surface to map one brain surface onto

nonlinear differences between subjects have been propodB@ther based on extracted surface (geometric) features. The
elastic mapping of one brain volume to another was found by
solving the differential equation that models an inhomogeneous
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estimate the affine transformation that minimize an intensity dife speed up the very time consuming surface distance computa-
ference between a reference and a test data set. Similarly, Sti@ms that take place at each iteration of the optimization process.
and Davatzikos [21] have proposed an elastic registration algdie wavelet-based registration method presented here is guided
rithm that is driven by Geometric Moment Invariants (GMI)py sample points from rat brains’ external and internal surfaces.
the GMI features were selected hierarchically and successivdinite-supported, semi-orthogonal wavelet was used to ap-
approximations of the energy function were minimized. Lest@roximate the nonlinear deformation field. The similarity metric
[22] classified nonlinear hierarchical registration methods basased was based on the squared sum of surface distances where a
on a gradual increase in data complexity, warp complexity, asdrface distances defined here by the interval between a point
model complexity. on a test surface and the closest point to it on the corresponding
An alternative representation of the elastic deformatioeference surface. The Marquardt-Levenberg (M-L) optimiza-
transformation is wavelet multiresolution decomposition. TH#&n algorithm is used to minimize a functional that is the sum of
wavelet, being an inherently hierarchical approximation d#o terms, namely the sum of squared distances and the elastic
a transformation, is naturally suitable for such progressienergy.
(coarse-to-fine) optimization starting from the low-resolution Often a registration algorithm minimizes a cost function that
approximation of the transformation (global deformation)s a combination of a distance metric and smoothness constraint
through the details in its different orientations, and ending witlnegularization) [10], [21], [28]-[31]. There are ample algo-
the finest details of the transformation (local deformation). rithms that iteratively minimize the surface distance in order to
Wavelets have been used by several researchers for theliggarly align two shapes, sometimes these are referred to as
plication of image registration, either in order to represent thi@rative closest point (ICP) algorithms. For example, see [32]
nonlinear deformation between two images [23]-[25] or to refier a widely used geometric matching ICP algorithm. In this
resent the intensities of images’ voxels [26]. For example, Anfiaper, we are interested in recovering an elastic transformation,
[23] used a wavelet basis as well as a Fourier basis to repiteerefore, in addition to minimizing the surface distance we
sent the deformation. He used a gradient descent optimizatidimimize the deformation elastic energy. The deformation field
method to minimize the mean of squared distances betweenhbgtween two corresponding objects is recovered progressively,
tensities of overlapping voxels. Similarly, Downie [24] used atarting with the global part of the deformation and refining
simulated annealing optimization method to find the wavelet c4th the local deformation components.
efficients that minimize the sum of squared distances betweenT his method of surface-based registration that we applied was
intensities of corresponding voxels. Both algorithms, [23] argpecially designed for registration of large volume histological
[24], are image-based and as such are most suited for applidata in neurobiology settings. In these setting, it is beneficial to
tions dealing with intramodality datasets. In contrast, the regige able to match an experimental (test) brain onto an atlas using
tration algorithm developed in this study, is based on geometdbly a sparse sample of points from the test brain structure sur-
features: alignment is guided by samples from the objects’ sfzees. In our experiments we used a limited number of samples
faces and, therefore, can be used for applications dealing wilggss than 1% of the number of voxels that define each struc-
intermodality as well as intramodality scans. ture’s surface) and applied the alignment algorithm to minimize
In this paper, we are interested in the registration of raj the distance between only these points and the corresponding
brain images from a cryoplane macroscope. Briefly, witfeference surfaces and 2) the elastic energy. We then evaluated
this instrument frozen tissue is cut with a microtome and tfiee performance with another larger dataset; we measured the
revealed blockface surface imaged. The sequential images &sidual distance between this larger validation dataset and the
in-register by virtue of the accurate repositioning of the tissuieference brain’s surfaces.
underneath the imaging system afforded by our system. Tissudhe rest of the paper is organized as follows. Section II
differentiation is achieved by systemic staining, in the presepesents the wavelet representation of the elastic deformation.
case using black magic ink. As in all histological proceduredlext, in Section llI, the registration algorithm is described.
intersubject variability includes intensity variations acrosSections Il and Il are an extension of the presentation in
speciements. Additional deformation is also introduced Kyefen [27] into a 3-D formulation. Alignment experiments,
the imaging process itself. Solely intensity-based alignme#monstrating the algorithm’s performance, are presented in
procedure has not proven effective, and so we have adopfgftion IV. We conclude with a discussion in Section V.
geometric-based ones instead. Because as of yet only limited
success has been achieved with fully automated segmentation Il. ELASTIC DEFORMATION REPRESENTATION

of such geometric features and the high cost in labor associateg\ . . . .
. . i . registration algorithm estimates the parameters of a mor-
with manual delineations, we have been motivated to develop a

; : phological transformation that brings into correspondertesta
registration method that would rely on only a sparse sample'gf. . : .

; : . objectand areference objecWhen expanding the elastic defor-
points on the surface of brain regions.

. mation field with a wavelet decomposition, it is necessar
In a previous study, we presented a 2-D wavelet-based r u(x) b y

% estimate the wavelet parameter ve at yields
istration method [27]. Here, we extend that method to three- P ctothaty

dimensions and compare its performance with that of a TPS
method [8]. We show how the scalability of the wavelet-based , )
method helps in reducing the complexity introduced by the high Y =y +u(z,y,zc)
resolution 3-D data. We also devised an adaptive distance map 2 =z +u(z,y, z;c)

t' =z +u'(x,y,2;c)
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wherex = (z,y, z) are coordinates in the test object space amd N = (1024,512,512), and when using the sixth resolution
x' = (2',y,2") are the corresponding coordinates in the refevel, contains 1024 parameters. In order to further reduce the
erence object space. The registration algorithm estimatgs number of parameters that the optimization algorithm deals with
minimizing 1) the sum of Euclidian distances between points @t a time, the wavelet coefficients can be split into groups that
corresponding surfaces of the test’s and the reference’s strare classified by the orientation and the level of resolution they
tures and 2) the elastic energy of the deformation. represent. Each such group of wavelet coefficients corresponds
As mentioned earlier, we use wavelet expansion to apprdr-a different component of the deformation. In other words,
imate the elastic deformation. The 3-D separable wavelet dae deformation is a combination of components with different
composition of a deformation transformatiar{x), everywhere levels of details (resolution levels) and orientations (subbands).
within a cubical suppolN = (N, N,, N,) is presented in (1) A progressive approach is applied in which the wavelet coeffi-
cients that correspond to a low resolution transformation com-

N=! 27 ik (2 K ponent are estimated first and the wavelet coefficients that cor-
Z 'x—k) respond to a high resolution transformation component are es-
timated last.
8 N;-—-1
J s J
+ Z 2 Z; 1;) i (27x — k) [ll. ALGORITHM DESCRIPTION
N; =2 ]N =279(N,,N,,N.) The registration of one elastic object to its homologue is

_ o . done by estimating the nonlinear deformation that brings

k=(ke, by, bo), x=(2,9,2), i=1,23 (1) together a pair of corresponding surfaces. The deformation

The basis functions are 3-D functions that are translated acrésgiétermined by the registration parameters—the wavelet
a cubical grid with intervals o/ and within a support of coefficientscii —that minimize the functionak/(c). We define

N = (N,,N,,N.). Each basis function is weighted by thé® functionalF(c) as the weighted sum of 1) the sum of squared
correspondlng wavelet coefficienf; . The basis functions are surface distances(c) and 2) the elastic energyi(c), so that
a tensor product of the one-dimensiosahling andwavelet £(¢) = ¢(c) +w - L(c). The parameter is a weight constant

functions as in (2) that is empirically determined. Sections IlI-A and B present the
derivations ofe(c) and I(c) as a function of the registration

=270 — ka)p(27y — k) (272 — k=) parameters, respectively. Section IlI-C describes the progres-

:(/)(2 Ig — k)2 7y — k(272 — k) sive approach to the M-L-based optimization procedure applied

* 3 Y » ? in the proposed wavelet-based registration algorithm.

:¢(2 Iy — kx)d)(Z Ty — ky)¢(2 Tz — kz)

Ot =27 — ky)p(27 Ty — ky)P(277 2 — k) A. Sum of Squared Distance&:)

O =y(277w — k) P27y — ky)p(27 2 — k) The distance between two pointd,, = ||d(a(x., <), S.)||,

B6 =op(279x — k) p(270y — ky ) (2792 — k) is the Euclidean distance between an already mapped point on

_ _ —j the test surfaca(x,,, c) and the closest point to it on the ref-

_21—1% 277y —ky)p(27 7z — ks : T . :
LR )9 _,y ) _,Z ) erence surface,x’,, € S,er. Similarly, a vector distance is
=27z — ko )Y(27y — k)27 2 — k). (2)

defined asv,,, = a(x,,c) — x',,,. Note thatd,,, = ||v..||. The

The superscript index,s™ in (1) marks the subband (orienta-magnitUde being minimized is the sum of the squared distances

tion) in the wavelet decomposition space. M M
Multiresolution analysis theory states that a transformation Z a2, = Z a(X,,c), S,)2. 3)
that is approximated by its projection into spdége_; can be m=1

equivalently represented by its projection into a lower resolution Local dependency of(c) on the registration paramete

level spacd’; and the difference spacBsp+ Wr 1+ -+ Wy o achievedpb subs){ituti(ri the Ta Igr ex ansi%rd fin tr:se’

(see Vetterli[33], Strang [34], Mallat [35], and Daubechies [36 y 9 y P A
icinity of c¢; asfollows:

for example). The wavelet representation resolution is deter

mined by the application and by the smoothness degree of the M
transformation. e(e) = Y [dm(c)) + ATgrad d,,(c))]?
In general, the number of paramete@; is the same as the m=1
number of grid points in the represented transformation cubical M
support. For example, in our experiments a supporNof= = [d2(c1) + 2 — Dy(c)) AT grad dum (c;)+
(N.,N,,N.) = (1024,512,512) was used. Therefora024 - m=1
512 - 512 = 268435456 parameters are required to represent ATgrad d,, (¢;)grad, dy, (c;)TA]
the deformation in one direction. This is a large number of pa- =e(c) + ATb + ATAA 4)

rameters to handle for most minimization algorithms. However,

since the transformation of interest — the elastic deformation where

is by its nature smooth, it can be estimated with only lower reso-

lution levels and still provide reasonable accuracy. Forexampleo =9 Z dm(c1) )_ A;=2 Z (Cl)
the wavelet decomposition of a deformation field with a support 307 301 301
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and Let us continue and develop the expression in (5) con-
sidering only the transformation component(j,s) =
A=(c—c). ZkN;gl cﬁ(q?s(ijx — k) for i —1,2,3. Inthis case, (5) is a
linear combination of the following terms:
Note that in the M-L method only the two first elements of the

Taylor expansion off,,, are included so that the computation of [8“1 8_“}

the Hessian matrix is conveniently avoided [37]. Ay, O
Following the chain rule of differentiatio}d,,, (c;)/d¢ = is s 0P%(277x — k) 00*(277x — n)
grad,d,, - da/dc. It was shown in [38] thaigrad,d, = - ZZ CikCin oz, oz, dx
Vm/dm. IN OUr case, it follows that Z Z is o 15 (7 i ke ) = €TQ ole @
= k,n) =c; I
ddy,(c;)  Odp(cy) Uiiq)s(2—jx _K) il e
dec 8c§i T d, m ’

Accordingly, the energy of the transformation portion that cor-
responds to level and orientatiors is
B. Elastic EnergyL(c)

_ 1sT s 2s 1sT s 3s 2sT s 3s
The second termi(c), that is being minimized is the elastic  £(¢) =2¢;°" Qj12¢5” + 2¢;°7 Qfy3¢;” + 2¢5°7 Qfasc;

J

energy + CIST(2Q 11+ Qjao + Qjss)c; i
L(c)= + CZST( S11 1+ 2Qjes + Q]33)
3 3 N2 + C?QT(lel + Q2 +2Qjs3)c 35 8
/ MZZ@“) + (it <ai+ai+ai> dx (5) _ _
| =\ Or1  Oza Oz The matrix form of (8) is
wherep, and) are the Lame’s coefficients that reflect the elastic L(c) = cTQjc 9)

properties of the medium. In this paper, for simplicity, we chose:

A = 0andp = 1. Adding spatially varied setting of these coefwhere the equation shown at the bottom of the page holds.
ficients can provide refinement of the elastic model. But doing/e proceed with applying the Taylor expansion/dt) in the

so is beyond the scope of this paper. Substituting the transfeicinity of ¢; to (9)

mation,u, as represented in (1) results in a linear combination

of the integral L(c) %clTQ;cl + (c— cl)T2Q;cl + (c— cl)TQ;(c —-q)
L 09%(2-ix — k) 99*(2~'x — n) =c/ Qjer + AT2Qjc + ATQ}A. (10)
hpy (4,1, k,n) = / 5e 5o dx (6)
P 1 It can be shown that the matri® is linearly proportional to

wherep,q = 1,2. (An analytic evaluation of this integral isthe Wavelet-Galerkin discretization matrix of the homogenous
presented in [27].) In order to simplify the expression for thstatic Navier PDE [27]. This implies that minimizing the elastic
elastic energy, it is assumed that the scaling and wavelet fuetergy is equivalent to solving the Navier PDE.

tions used satisfy a principle we callédeefold orthogonality ~ The dimension of the matriQ; is [3 (279N, - 279N,

[27]. The threefold orthogonality property states that the scalirg?N.),3(2 7N, - 27N, - 2~ JN )]. Hence, in the higher
and wavelet functions are orthogonal to each other and orthdgrels of resolution, due to the increased wavelet basis func-
onal to each other’s first and second derivatives. The consens’ locality, the matrixQ; is large. Note though that the
quence of satisfying this property of threefold orthogonality isiatrix Q; depends only on the chosen suppdst, and the
that minimizing the elastic energy of the deformation is equivaealing and wavelet basis functiof§. Q; does not depend on
lent to minimizing separately the elastic energy of the differethie object of interest (more specifically the objects’ shape and
deformation components. In this paper, we merely approximatdative deformation). Thereford); can be computed once
the threefold orthogonalityusing a semi-ortogonal wavelet —offline and reused thereafter for the deformation estimation of

spline of order 3 [27]. any input object data.
2Q511 + Qe + Qjss Qj12 Qjis
Q; = Qizl Q;'u + 2Q§22 + Q§33 Qj’zz&
a1 Qjso Q511 + Qoo +2Qj35
and

[C}ST C?ST C?ST ]T

o
Il
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C. Parameters Optimization TABLE |
, THE CUBE DIMENSION THAT INSCRIBESEACH BRAIN STRUCTURE AND THE
The expressions developed above for the sum of the squaregoxeLs NUMBER THAT REPRESENTEACH BRAIN STRUCTURE' S SURFACE

distancese(c), and for the elastic energy(c), are combined

r [t in the function Cube dimension Voxels
to result in the functionaF(c) T YT 7 nomber
External Surface 561 | 398 | 411 | 711716
E(e) =¢(c) +w - Lc) ) V34 - third and forth ventricle 154 | 122 | 181 | 35070
~ T T, LAT MCP - middle cerebellar peduncle 130 | 152 | 72 8142
~e(er)ter Qe+ AT (b+2wQe)+ 54 (A+20Q)A. LV - lateral ventricle 161 | 202 | 66 | 18998
(11) TPZ - trapezoid 134 | 147 | 62 | 16809
MC - midline of cerebrum 432 | 243 | 287 | 50136
Based on our experiments, the parametavas set arbitrarily =~ N/ - seventh nerve 79 | 114 57 | 9854
to 1. The overall minimization algorithm had as an input a ——c.-—optic chiasm and tracks g6 {121 76 | 13105
- 9 . p TG5 - trigeminal nerve 181 | 186 | 110 | 36692
subset of samples from surfaces of the test brain’s structureSce - corpus callosum 174 | 214 [ 174 | 57444
Accordingly, a range of wavelet resolution can be used for CT - cerebellar tracks 163 [ 220 | 172 | 114344
the alignment. The estimated wavelet coefficients included €€+MC - corpus callosum- 32 117 | 44 ) 4665
ly those that corresponded to wavelet basis functions whosemaue intersection
only p 3 SSC - superior colliculus 39 | 33 | 31 5912
support overlapped the surfaces of the test brain’s structureSAC - anterior commissure 213 | 206 | 69 | 49895
Starting with zero for coefficient values, an iterative procedure CP - cerebral peduncle 57 15211 3938

was used to compute coefficients that minimized the functional

defined in (11). Iterations were within resolution levels an . . .
orientation, using the M-L optimization algorithm [39]. Each‘ilherefore,the alignment of experimental data (test brains) onto

iteration involved computing the locations of the deformed" atlas (reference brain) when based only on a small subset of

test brain, computing surface distances (the distance betweegr"f‘ rgple points from the surfaces of a test brain's structures can

point on the surface of the test brain’s structure and the clos StOf great value. Table | shows the dimension of the cube that

point to it on the surface of the corresponding reference brair'1nssCrlbes each of the brain structures employed by this study

structure), and evaluating matri and vectorb. as well as the number of voxels needed to fully represent their

Using a coarse-to-fine approach, we first solved for the Cogg{;afheé following experiments, we sampled surface points at
ficientse!,, considering only the lowest resolution level where g exp ' P P

j = J ands — 1. Next, we proceeded to the second subband distance of about 30 voxels from each other (less than 1%
s — 2 (still at the same resolution level, — .J), solving for of the sample_s that were needed to represent_the surface of t_he
¢2. In the same manner, we solved for t,he otHer Six subbang)s(temal and mtern_al structure_s of t_he test bra!n). We used thls
8": 3 throughs = 8, at résolution levej = .J. We proceeded srﬁgll subset to guide the registration. We validated th_e regis-
down the pyramid to the next level of resolutign= .J — 1, tration accuracy based on another larger subset of points. In a
solving for the different subbands at this level= 2,...,8. simulated case where the true correspondence; are kpown, the
Hence, the computation of the wavelet coefficients was dohrge error can be computed as the.average Euclidian distances
progressively until the estimation of all coefficients was com-etWeen known corresponding points. In a real case, however,
pleted. Note that since threefold orthogonality is not satisfié’éﬁhere the true correspondences are anno_wn, onlguriace

ror can be computed. Surface error is defined here as the av-

(merely semi-orthogonal wavelet was used), the order in whiéh s i ) .

the subbands are chosen plays a role. Indeed different ordead® Euclidian distance, where a(.j|s,,tance is measured between
will result in slightly different results. This can be dealt with® pomt on the surface of a t?St brain’s structu're, and the closest
by iterating several times through the different subbands With?r%)mt to it on the corresponding reference brain’s structure.
a specific resolution level. Our experiments showed that moge

. . . e . Recoverin nthetic Deformation
than one iteration yields only slight improvement in accuracy. g Sy

The efficacy of the wavelet-based method to align one rat
IV. EXPERIMENTS brain volume to another rat brain volume was assessed first

using one brain volume. The evaluation involved three steps: 1)

In th'fs Eecnon, Ithebperf(;)rmaﬂc(ej anddcomputauondal advallsyiving a known deformation to the test brain to generate the

Lag_es of the wavelet- ased fmet 0 arle emonstrated. Sevepdatence prain: 2) registering the test brain onto the reference

rains were re_constrgcte rom Cryopiane macroscope Images; - onq 3) comparing the results of the estimated deformation
to yield 40um isotropic 3-D datasets. One of these was defin th the known deformation

asour referencg atlas Wh,'le the rest were used as test brains. TlEriorto registration, the test brain was positioned at the center
data used to drive the alignment algorithm consisted of Mantk, 1024x 512 x 512 cube Polynomial mapping
ally delineated surfaces of external and internal structures of the

brain (see Table I). The shape of these structures and their rela- Z
tive position in the brain are shown in Fig. 1.

Manual delineation of surfaces of a brain’'s anatomical
structures is tedious and time consuming, and full delineatioras applied to the test brain to create the reference brain. Fig. 2
is sometimes impossible due to a local lack of contrast causgtbws the test brain with the absolute deformation between ref-
by a nonuniform distribution of the systemically applied stairerence and test brains coded in gray scale on its surface. Table Il

D J k
AjjkTy - Ty T3
0< (i+j+k)<4
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caudal

rostral

Fig. 1. Volumes of interest employed to asses algorithm performance. Shown is a ventral view with the external surface rendered semi-opagtractotesa
are shown in darker opaque shade: (a) Third and forth ventricle, (b) middle cerebellar peduncle, (c) lateral ventricle, (d) trapezoid, (e) ceidibreraf (f)
seventh nerve, (g) optic chiasm and tracks, (h) trigeminal nerve, (i) corpus callosum, (j) cerebellar tracks, (k) corpus callosum-midlitierin{erseperior
colliculus, (m) anterior commissure, and (n) cerebral peduncle.

shows the mean and median of the applied deformation on ttese, performance was assessed computing the true error
surfaces of the external and internal structures. This deformatitmsed on the known CPs. The means and the medians of
was represented by a semi-orthogonal spline wavelet (of ordlee alignment errors for the different structures are shown
3) whereJ = 8 andR = 6. in Table 1l. In the known CPs case, the average error was
Two cases were examined: 1) when the optimization alkeduced from about 9 voxels to 0.3 voxels while in the un-
gorithm used the known correspondences to compute tmown CPs case the error was reduced from about 9 voxels
distance between the test's sample points and the referet@wd.8 voxels. These results demonstrate that the better the
(known CPs); and 2) when the optimization algorithm usezlrface distance estimates the distance between true corre-
surface distance to compute the distance between the tespsnding points the better the registration accuracy. In other
sample points and the reference (unknown CPs). In eithgords, the average error for the first case can be considered
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TABLE I
L 18 WAVELET-BASED REGISTRATION ERROR(IN VOXELS)
Initial True Error
r e surfaces deformation Known CPs Unknown CPs
mean | median | mean | median | mean | median

L 1, External 9.76 9.75 0.34 0.30 2.24 1.95
Vi34 7.90 7.68 0.32 0.27 0.73 0.58
MCP 10.18 10.35 0.19 0.19 0.46 0.46
2 LV 7.36 7.30 0.30 0.23 0.435 0.22
TPZ 10.38 10.57 0.17 0.17 0.79 0.56
MC 8.62 8.36 0.29 0.23 0.83 0.69
D N7 9.85 9.68 0.57 0.59 0.76 0.88
OCT 9.13 9.19 0.18 0.17 0.96 0.77
TGS 9.82 10.57 0.23 0.20 0.87 0.55
° CC 7.72 7.58 0.31 0.27 0.69 0.48
CT 9.10 8.96 0.41 0.41 0.64 0.54
i CC+MC 8.97 9.01 0.13 0.12 0.27 0.22
sC 7.27 7.24 0.23 0.23 0.38 0.35
AC 8.50 8.53 0.37 0.31 1.03 1.01
CP 7.95 7.87 0.47 0.45 1.11 1.07
Average | 8.83 8.84 0.30 0.28 0.81 0.69

One approach to speed-up the surface distance computation
is to use a discrete distance map. In this approach, surface dis-
tances between points on a cubical grid and a reference struc-
ture are precalculated and stored in a 3-D array—referredto as a
distance map [38]. Later, the registration algorithm accesses this
distance map to extract a desired surface distance. Although the
usage of a distance map does speed the surface distance com-
putation enormously, it has two drawbacks. First, only distance
values associated with grid points can be extracted from the dis-
tance map, meaning that the surface distance value at an arbi-
trary point is not available. (One way to deal with this is to es-
timate the required distance using a linear interpolation (LI) of
the eight neighboring grid points’ distance values.) Second, the
distance map requires a lot of memory since it needs to con-

(b) tain the distance values of cubical grid points with support that
) - . . _ _should at least inscribe the union of the test and reference brains.
Fig. 2. The test brain with the applied polynomial deformation magnltud'& typical size of the distance map of the reference brain’s ex-
coded on its surface, and shown at (a) horizontal rotatien3.5 and (b) 37.5
and vertical elevation of 30 Values on the gray scaled bar shown on the righternal surface is 592 432 x 448. Assuming that each distance
are in voxels. is stored in 3 bytes, the total memory required for this distance
map is about 328 Mbytes. Note that a separate distance map

as a lower bound of the algorithm performance in the setti§pould be precalculated for each of the fourteen internal struc-

of synthetic deformation. tures of the reference brain as well.
The above approach, although leading to efficiency in com-
B. Adaptive Distance Map putation time, is inefficient in the following aspect. Since it is

During registration, one of the operations that contributes sigQt known a head of time at what locations distance values will
nificantly to algorithm complexity, in terms of both storage an8€ required by the algorithm, the distances for grid points every-
time, is the computation of surface distances. A surface distarffaere within the cubical support needs to be precalculated and
value needs to be computed for each sample point on the Ss;».“;)_red. This results in a large storage o_f unusgd dlstancej values
face of the test brain’s structures; this computation takes platiBce usually computation of distance is required for points at
on each iteration of the optimization algorithm, as described i} Vicinity of the test brain’s surfaces as it progress toward the
the previous section. As mentioned earlier, the surface distaif@gresponding reference brain’s surfaces.

is the distance between a point on the surface of a test brain’$n this paper, we reduced the memory size required to store
structure and the closest point to it on the surface of the cortbe distance map applying an on-demand construction of the dis-
sponding reference brain’s structure. For example, if the surfae@ce map. Instead of populating all of the distance map prior
distance associated with a point on the external surface of thaegistration, we initialized an “empty” distance map. During
test brain is needed, a search for the closest point to it amaegistration when a distance value at a certain point was required
711 716 reference points is necessary (see Table 1). an inquiry was done to the distance map to check if this distance
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TABLE Il TABLE IV
THE ADAPTIVE DISTANCE MAP MACRO-VOXEL MEMORY ALLOCATION AND AVERAGE SURFACE ERROR FORAFFINE AND WAVELET-BASED REGISTRATION
SURFACE DISTANCE COMPUTATION ACCURACY
Affine Wavelet
Maximum | Allocated | Distance est. mean | median | mean | median

MVno. | MVmno. | error [voxels] Ext. Surface | 4.54 | 3.27 | 2.11 | 141
5{;}4 Surface 21731762 215;130 g;g V34 756 | 4.62 | 2.94 | 156
. MCP 9.06 8.13 4.28 3.08

MCP 960 41 0.12
v 1948 &5 015 LV 5.07 3.90 2.20 1.15
7 736 ol 017 TPZ 5.55 4.51 2.09 1.36
MC 10353 397 0.09 MC 2.37 1.83 1.20 0.83
N7 538 16 020 N7 6.99 6.57 2.15 1.76
OCT 616 33 0.14 OCT 5.86 3.88 2.77 2.17
TGS 1890 141 0.21 TGS 5.39 3.08 2.30 1.69
oC 2912 769 027 CcC 2.57 2.23 1.42 1.10
CT 2873 385 0.26 CT 5.60 3.94 2.79 1.84
CC+MC 80 21 0.12 CC+MC 4.84 4.88 2.47 1.56
sSC 100 21 0.22 sC 3.61 3.25 2.30 1.62
AC 1440 198 0.25 AC 2.37 1.77 2.18 1.55
CP 126 14 0.11 CP 5.07 4.06 2.62 1.82
Average 3569 311 0.18 Average 5.10 3.99 2.39 1.63

. . TABLE V
value has already been CompUted and stored by a Previous Hyqcace ERRORS(IN VOXELS) AS A FUNCTION OF THERESOLUTION LEVELS

quiry. If the distance value did not exist in the distance map, it

was computed and stored for future inquiries. Res. __ Number of Parameters Surface Error
The memory allocation and access were done as follows. The ;'_1; ﬁi’;‘m“m f{’g:;l a3 m;‘i‘f“

distance map volume was partitioned into macro-voxels66f 37 | 16x8+128x7 16x8185%7 585 | 202

voxels. A macro voxel was allocated only when a distance value 8-6 | 16x8+128x7+1024x7 | ~16x8+85x7+300x7 | 2.39 | 1.63

at a point located within its support was required. A distance

value at a certain point is accessed l_ay a pointer to_the CO&in and when using LI (adaptive distance map is usee)1ig

sponding macro-voxel and another pointer to its location within. H . dantive di he alqorith

the macro-voxels. Each time a distance value was required cr)nlg. ence, using an & aptive distance ma_lpt ca gorithm runs

of the followin séenarios 100k place ' about seven times faster (based on algorithm implementation
9 place. using MATLAB on a Pentium IV PC with 1.9 GHz and 2 GB

1) If the macro-voxel associated with this point was alloRAM). Interpolation error though is on average 0.18 pixels (see
cated and contained all the necessary data, then the Taple I11).

terpolated distance value was returned.
2) If the macro-voxel associated with this point was allo€. Rat Brains Mapping

cated but some or all of the distance values at eight neigh—rq gyaluate the algorithm in the intersubject setting, we reg-

boring grid points were not stored in the buffer, then thgareq the six rat test brains onto the reference brain. It should
missing distance values were computed and stored in € nsted that in this case only the surface error was measured
macro-voxel buffer and the required distance value Wace the true error is unknown. Prior to the wavelet-based reg-
interpolated. . S istration the brains were linearly aligned using a surface-based

3) If the macro-voxel associated with this point was not aline algorithm [40]. Table IV shows the average registration

located, then a macro-voxel buffer was allocated, the diggrqrs of the six different test brains. The errors were computed
tance values of eight neighboring grid points were consi after affine alignment and after wavelet-based alignment.
puted and stored in the macro-voxel buffer, and the rg can be seen from Table IV, the average error was reduced
quired distance value was interpolated. from 5.1 to 2.4 voxels.

This adaptive on-demand construction of the distance mapThe progressive refinement of the deformation estimation is
resulted in a significant reduction in the memory size needdémonstrated in Table V. Table V shows the registration error for
to accommodate the distance map. Table Il shows the madke rat brain surface alignment as a function of an increased res-
imum number of macro-voxels versus the number of actualyution level. The maximum wavelet coefficients that are con-
allocated ones for each of the brain structures’ distance maganed in a support of 1024 512 x 512 are shown beside
It can be seen that the adaptive distance map required on e actual number of wavelet coefficients that were used. The
erage ten times less memory than a full precalculated distamatual number of wavelet coefficients used corresponds to the
map. Table Il also shows the estimation error that is the reravelet basis functions that overlap the test brain’s structures.
sult of using LI for the surface distance computation. Expe®nly these coefficients were estimated. This procedure resulted
iments with registration of synthetically deformed test braiim a considerable reduction in complexity. Another reduction in
showed that the algorithm’s running time when using an exazdmplexity was achieved by considering only lower resolution
surface distance computation (no distance map is used)28 level of the wavelet representation, where- 8 andR = 6.
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TABLE VI mulation results in sparse matrices and decoupling of equations
SURFACE ERRORS(IN VOXELS) FOR THEWAVELET-BASED AND THETPS  that correspond to different orientations and resolution levels.
REGISTRATION METHODS . .
The alignment method proposed here is a surface-based mul-

Wavelet-based Method _ Thin-plate Spline tidimensional registration algorithm that is guided by a small
P%zf“' mean | median E:g P;zf"' mean | median E:g number of sample points from the surfaces of a test brain struc-
<128 | 343 | 241 | 450 | ~128 | 410 | 2.89 11 tures. The average error results, obtained from the registration
~700 | 2.85 | 2.02 [ 600 | ~700 | 3.04 | 1.99 75 of six rat brains, show a more than twofold improvement over
~2800 | 239 | 1.63 | 713 affine alignment. The scalability of the wavelet-based algorithm

was demonstrated and was shown to be a possible attractive
g){ternative especially when compared with the TPS. The TPS

Finally, a comparison between the performance . . LT LT
. method, although it provides a closed form solution, is limited
wavelet-based and the TPS [8] algorithms was done. As.IS; . - :
) ; : ; . jnits numerical capability to handle a large number of regis-
described in Gabrani [8] the TPS interpolates the elastic de-,. .
: . : : : .~ tration parameters. In addition, to get accurate results the TPS
formation between two objects using radial functions. Briefl

the TPS method provides a closed form solution in the form g Ef\thOd requires as an mput_ a large numl_aer Of. correspon_dlng
. . . . paints that do not always exist when dealing with anatomical
a linear system that satisfies a known deformation at a g|vgn

number of corresponding points. In this method, the number%tfrfaces'

. . 2 : In our experiments, we found that the algorithm’s accuracy
registration parameters is directly proportional to the number : . 4
. . ) . epends on how well the surface distance estimate the true dis-
of corresponding points used. Hence, the dimension of the

linear system is threefold the number of corresponding poin ghce between corresponding points (see Table ). We believe

. . e ﬁ'at using contrast information in the vicinity of the surfaces of
Consequently, solving this system becomes more difficult as : o .
corresponding brains’ structures will lead to a more accurate es-

the number of parameters grows. Moreover, the linear system . . .

. : imate of the distance between corresponding points. In the fu-
is not sparse, so methods that take advantage of sparsity canno : : :

be used ture we plan to explore a hybrid approach in which voxel-based

In our experiments with the TPS method, we estimated the Fggtures, besides geometric features, will be used to guide the

quired corresponding points using a surface distance. Tabler\G}g'Stratlon'
shows the average errors for the TPS and the wavelet-based
methods when using different numbers of registration param-

eters. Unlike the wavelet-based method, the TPS cannot resolve

the registration parameters in a progressive manner and is, therer] 1. N. Bankman Handbook of Medical Imaging San Diego, CA: Aca-
fore, limited in the number of parameters it can handle. It can be  demic, 2000.

; _ ; ] A. W. Toga,Brain Warping New York: Academic, 1999.
seen, in Table VI, that the wavelet-based method, because it cagt, J“ 2"\ "voi "o dva Viergever, *A survey of medical image regis-

deal with more estimation parameters, can potentially resultina " tration,” Med. Image Anal.vol. 2, pp. 1-36, 1998.
better alignment when higher resolution levels are used. On thé4] J. Duchon, “Interpolation des functions de deux variables suivant le prin-

other hand. the TSP being a closed-form method. takes much ciple de la flexion des plagues minces,"RAIRO Analyze Numerique
! ! ! vol. 10, 1976, pp. 5-12.

shorter time to run. [5] J. Meinguet, “Multivariate interpolation at arbitrary points made
simple,”Z. Angew. Math. Physvol. 30, pp. 292-304, 1979.
[6] A.Goshtasbhy, “Registration ofimages with geometric distortioli<EE
Trans. Geosci. Remote Sensiugl. 26, pp. 60—64, Jan. 1988.
V. CONCLUSION [7] F. L. Bookstein, “Principal warps: Thin-plate splines and the decompo-
. . . sition of deformations,JEEE Trans. Pattern Anal. Machine Inteliol.
The nonlinear morphological difference between two corre- 11, pp. 567-585, June 1989.
sponding organs complicates matching their features. Align-[8] M. Gabrani, “Multidimensional spline theory and surface-based align-

I o : : t of brains,” Ph.D. dissertation, Elect. Comput. Eng., Drexel Univ.,
ment of brain histological images further adds to this complexity Qﬁ?adoemrrﬁ;nsm 1998_'Ssera'°n ect Zomptt =ng., Brexel T

because of the need to process high resolution data. Hence, [8] M. Gabrani and O. J. Tretiak, “Surface-based matching using elastic
registration algorithm suitable to the application of histological _ transformationsPattern Recognvol. 32, pp. 87-97, 1999.

. . - _ [10] H. J. Johnson and G. E. Christensen, “Consistent landmark and inten-
brain mapping should have computational flexibility and scala- sity-based image registrationEEE Trans. Med. Imagyol. 21, pp.

bility so that a highly nonlinear matching of large images will 450-461, May 2002.

be feasible. [11] J.F. Krucker, G. L. LeCarpentier, J. B. Fowlkes, and P. L. Carson, “Rapid
. . . . elastic image registration for 3-D ultrasountEEE Trans. Med. Imag.

In this paper, a registration algorithm was evaluated that 21, pp. 1384-1394, Nov. 2002.

offers a trade-off between complexity and accuracy. Thig12] S.Belongie, J. Malik, and J. Puzicha, “Shape matching and object recog-

algorithm recovers the deformation field between two brains nition using shape context§EEE Trans. Pattern Anal. Machine Intell.

. . . . . . vol. 24, pp. 509-522, Apr. 2002.

In a progressive manner: gIObal deformation is restored flrs[t13] R. Bajcsy and S. Kovacic, “Multi-resolution elastic matchinggmput.

following a refinement that is produced by estimating additive Vis., Graph. Image Processingol. 46, pp. 1-21, 1989.

deformation details. This hierarchical approach is enabled b£;4] C. Broit, “Optimal_regist_ration ofdeformedimages," Ph.D. dissertation,
. . . . Univ. Pennsylvania, Philadelphia, 1981.
a wavelet multiresolution representation of the deformauor[ls] B. C. Vemuri, J. Ye, Y. Chen, and C. M. Leonard, “A level-set based ap-

field. A M-L optimization algorithm is used to find the wavelet proach to image registration,” Proc. IEEE Workshop on Mathematical

coefficients that minimize the distance between corresponding _ Methods in Biomedical Image Analys2000, pp. 86-93. _
£ f brain struct To maintain the smoothness of t eG] R. Goldenberg, R. Kimmel, E. Rivlin, and M. Rudzsky, “Fast geodesic

surraces or prain structures. active contours JEEE Trans. Image Processingpl. 10, pp. 14671475,

deformation also the elastic energy is minimized. Problem for-  Oct. 2001.
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