
Design and Implementation of Software for Assembly and
Browsing of 3D Brain Atlases

Carl Gustafson1, Oleh Tretiak2, Louise Bertrand1 and Jonathan Nissanov1*

1Department of Neurobiology and Anatomy, Drexel University College of Medicine, 2900
Queen Lane, Philadelphia, Pennsylvania, USA

2Department of Electrical and Computer Engineering, Drexel University, 3141 Chestnut
Street, Philadelphia, Pennsylvania, USA

Abstract:
Visualization software for three dimensional digital brain atlases
present many challenges in design and implementation. These
challenges include the design of an effective human interface,
management of large data sets, display speed when slicing the data set
for viewing/browsing, and the display of delineated volumes of interest
(VOI). We present a software design, implementation and storage
architecture that addresses these issues, allowing the user to navigate
through a reconstructed volume quickly and smoothly, with an easy-to-
use human interface. The software (MacOStat, for use with Macintosh
OS) allows the user to rapidly display slices of the digital atlas at any
arbitrary slicing angle, complete with delineated VOIs. The VOIs can be
assigned colors of the user's choosing. The entire atlas, or selected
portions, may be resliced with slices stored as individual image files,
complete with delineations. These delineations may be transferred to
corresponding sections of experimental materials using our analysis
program (Brain). The software may be obtained from the laboratory's
web site: http://www.neuroterrain.org

Keywords:
3D brain atlas, 3D reconstruction, 3D visualization

*Corresponding Author:
Tel: 1-215-991-8410; Fax: 1-215-843-9367

Introduction

Neuroanatomical atlases are widely used to guide delineation of stained
sections, assist in electrode placement, and aid in surgical planning.
Numerous atlases are available [e.g. 1,2,3,4]. In general these atlases are
made of a series of non-consecutive 2D images of stained sections along
with graphical outlines of standard nuclei and tracts; they are usually
provided as printed manuscripts. These atlases suffer two major
deficiencies: they support only a limited number of orientations—typically
offering coronal, sagittal and horizontal views, often incomplete (for
example, in rodent atlases, the olfactory bulb is often not included in
horizontal or sagittal views)—and they are sparse with substantial gaps
present between sections. Three-dimensional digital atlases can overcome
these deficits and a number are now available for the rat [5], human [6,7],
mouse [8], rhesus monkey [10], fly [11] and other species.

To make use of these digital atlases, visualization software is required.
There are generalized volume visualization applications available via both
commercial (Voxblast [12], Amira [13] IDL [14]) and public (Open
Visualization Data Explorer [15]) licenses; however, these are not
particularly suitable for atlas display. While they do offer both voxel and
vector display and do support arbitrary plane of view, all necessities in
this specific setting of 3D visualization, they lack support for other
important functions of atlases such as display of stereotaxic coordinates
display, and textual annotations. They also fail to provide a
straightforward means of matching experimental sections to equivalent
atlas planes, natural navigational tools, or accommodation for the large
size typical of digital atlases. We designed an application (MacOStat) that
overcomes these deficits.

Design Considerations

The primary design consideration in developing MacOStat was usability.
By this is meant both an intuitive human interface, with directly
manipulatable interface elements, and sufficient processing speed to
make live navigation possible. An intuitive interface is of critical

importance in any computer software but it is especially important in
software attempting to map three dimensional data into a two
dimensional display space; the third dimension must be handled in a
consistent and predictable manner, and the available commands for
manipulating the display should be direct and obvious to the novice user.
However, there is currently no widely-accepted standard to handle these
requirements. Most applications rely on a series of orthogonal views
showing the projection of the slicing plane on the volume, along with a
view normal to that plane [16]. This type of interface is conceptually
simple - one can easily specify the slice location. Unfortunately, live
navigation using this interface is not easy — an obstacle to useablity with
this scheme is that manipulation is not direct — it is necessary to adjust
settings in several separate windows to navigate the atlas, while
monitoring the result in yet another distinct window.

Speed is the other side of the usability coin - as even moderate-resolution
atlases are quite large (a 17.9µm/pixel isotropic mouse brain atlas [9],
without any delineation, can easily exceed 100MB), efficient processing is
critical to providing a satisfactory user experience. It is difficult, if not
impossible, to accurately navigate through an atlas unless refresh rates
are substantially faster than a frame per second. Handling this massive
amount of data, and selecting and displaying individual slices quickly is a
another primary challenge. In addition, both fine- and coarse-grained
movement is required - fine grained movement alone quickly becomes
tedious when traversing large distances, and coarse-grained control
makes precise positioning impossible.

To meet these criteria, we developed a system that eliminates the entire
orthogonal-view paradigm, relying instead on only showing a slice of the
atlas for fine-grained navigation, and a wire-frame representation of the
slice’s location within the atlas’ bounding volume for coarse-grained
movement. These displays are directly manipulated - the user selects an
action from a toolbar, then clicks and drags the mouse over the display;
the display moves in direct response to the user. To support rapid display
and efficient access to atlas data, we have developed a novel data storage
technique that is generally applicable to volume (voxel) data.

A second design consideration is an architecture that facilitates
maintenance and enhancement. It is inevitable that software applications
will need fixes and additional features. This is especially true in relatively
new content domains, such as interactive digital atlases. Unless the basic
program architecture is initially well factored, and modular in nature,
future attempts at enhancements will result in increasing fragility,
resulting in either costly redesign, or a reluctance to add additional
features.

To realize this goal, we use object-oriented design techniques, and a
commercial application framework, MacApp [17]. The framework uses a
Model-View-Controller (M-V-C) design pattern well-adapted to user-
centric interface design, and is easily modifiable, via inheritance
techniques, to our content domain. Atlas data is abstracted into generic
voxel maps, with appropriate metadata handled by both customized
framework and purpose-built classes, acted upon by generic slicing
classes. A hierarchy of command classes abstract user interactions.
Customization of framework view classes provides the display
functionality. An additional advantage of object-oriented design is that it
facilitates reuse of existing code bases. In our case, we have an image
acquisition and analysis package (Brain [18]), developed in-house, that we
use for 2D delineation of the data sets used in atlas creation. Many of the
classes related to the data model in Brain have been reused in the
development of the atlas browser. The reuse already developed and
debugged code greatly shortens the application development cycle.

System Overview

We use an M-V-C pattern for our system. All the data structures (the
model) that comprise an atlas (gray-scale data, delineation, size and
calibration, metadata, etc.) are aggregated by a class descended from the
MacApp base class TDocument (Figure 1). The atlas is displayed (the
view) using classes derived from the MacApp base class TView (Figure 2).
Finally, all interactions with the user (the controller) are handled by
derivatives of the base class TCommand (Figure 3). Finally, we have

developed an additional class hierarchy independent of the MacApp
framework used to handle data slicing for later display (Figure 3).

The Model

The atlas browser has two independent components — the program to
construct atlas data files from separate, pre-aligned frames (Gluclose),
and the browser itself (MacOStat). To the greatest extent possible, the two
share the classes that implement the data model (the class hierarchy from
the atlas browser is shown in Figure 1). Both also share classes with our
analysis package, Brain; atlas data files are constructed from Brain image
files, and the atlas browser must export resliced images in Brain file
format. This means that our root data model has two independent
branches, one for the atlas document and one for the image documents
that can be matched to the atlas. The document objects used to construct
an atlas (not shown in Figure 1) contain additional data elements beyond
those required by the Brain application— for example, the position and
orientation of the image within atlas space. To accommodate this, we
created a subclass of the basic Brain document to hold orientation data.
All document objects have methods to read and write data files when
appropriate; this allows us to use existing classes, and add additional
capabilities via inheritance. Part of the initialization for document classes
usually includes the creation of view objects to display the document’s
data. Because this display is both not needed and computationally
expensive when constructing an atlas from images, we further subclass
the document to eliminate this view creation step.

In addition to the document classes based on code developed for Brain,
we also have been able to reuse classes developed to represent delineated
regions of interest and calibration curves. Added to this are 3D specific
classes to represent both gray-scale and binary volume data (image voxels
and volumes of interest) and metadata, as well as various collection
classes used to manage these data objects, which were derived from
framework collection classes.

The View

Previous work provided a view class that used an offscreen buffer for
drawing; this class was used to display individual image files opened for
matching purposes. A similar class was developed to handle display of the
sliced atlas image. Additional classes were derived from framework
classes for tool and informational views, and so forth.

Most views are subclassed directly from the base framework view class,
but some intermediate classes are used, primarily in the views that can be
manipulated via mouse (Figure 2). In TMouseOrientableView, the code
that responds to mouse actions resides in a superclass of the final view
objects, as all views that can be manipulated via mouse (wire frame
coarse-positioning and slice fine-positioning views) may then use common
code.

Many views are designed to be embedded in other views, to control
various aspects of view behavior. For example, T3DBufferedView is the
ultimate destination for sliced atlas images and the associated sliced
volumes of interest. It uses an offscreen image buffer to assemble the
final image prior to display. This view is nested into a view descended
from TMouseOrientableView, which controls responses to mouse
movement. While it is possible to derive T3DBufferedView from
TVolumeView or TMouseOrientedView, we also allow multiple views to be
nested in TVolumeView - for example, it is possible to browse several
different data sets, but keep all data sets at the same exact slicing
orientation. By separating the view classes, we can allow TVolume view to
handle both tracking and scrolling of the views, and transfer information
to all instances of the data model; the code to handle this if the
hierarchies were combined would be significantly more complex.

The Controller

A number of command classes were derived from the framework
command hierarchy to encapsulate user actions such as navigation and
reslicing. One advantage to this structure is that each command object
contains the information needed to undo any actions; commands may be
placed on a stack for multiple levels of undo if desired. By supporting
undo for almost all user actions, the human interface becomes much

more forgiving, allowing the user the confidence that any mistakes can be
recovered.

In addition to the suite of command classes, a set of classes used to
reslice volume data was created. In essence, there is one slicer class for
each type of volume data (gray-scale and binary) and display variant (8 or
32 bit pixels, for example). These slicers, which are persistent objects, are
controlled by the command objects spawned by the user’s actions. In this
case, much of each slicer’s code is independent of the other slicers in the
suite, primarily for performance reasons - the overhead of calling virtual
functions (the basic mechanism allowing a subclass to provide specialized
behavior) is normally negligible, but in the tight loops used in slicing, it
has the potential to become significant.

File Structure

Atlas files are stored in a tagged format. Each data item in the file is
preceded by a tag identifying the data, and by a length field specifying
how long the field is. This structure provides several benefits; the first is
position independence — each chunk of data is interpreted independent
of the data around it, and is not required to appear at a particular offset
in the disk file — it may be inserted anywhere in the file. The second
advantage is that the file structure is effectively separated from the
program’s version. A file created by a later version of the atlas
construction software, Gluclose, may still be read and understood by an
earlier version of MacOStat, it simply skips unrecognized tags. This in
turn means that development and distribution of atlas construction and
browsing software can proceed independently. A common problem in
many applications is the lack of forward file compatibility, this block
structure eliminates the problem in all except the most extreme cases,
and thus allows the developers more freedom in adding useful features.

Implementation Details

Data structures, either in the form of classes or other formalisms, make
up the core of an application. A well-designed data structure must model
the reality being represented and must provide a structure easily

accessible to, and supportive of, the internal program code. Object-
oriented design methods (in which classes include both the data and the
functions to manipulate that data) are often used to meet these
requirements. Good classes present an opaque interface to the application
allowing access to the data the instantiated objects maintain, while hiding
the actual implementational details from the application. This data hiding
results in better modularity, which allows future enhancements to be
made without disrupting the existing the program code.

Macrovoxels

As an example of the value of opaque data structures, let us first consider
the method we use for storing atlas image voxels. A typical method of
organizing volume data is in the form of a monolithic array of voxels; we
do not use this structure for reasons that will be detailed later. Instead,
we group voxels into clusters we call macrovoxels, and organize these
macrovoxels into a structure we refer to as a voxel map (Listing 1, 2). To
access an individual voxel, one requests a specific macrovoxel by
providing the voxel map with the macrovoxel’s address in atlas space, and
then requests the individual voxel by providing that voxel’s address to the
macrovoxel. A voxel value is returned. At no point does the voxel map
need to understand how the individual voxel data is stored, so
macrovoxels supporting binary, 8, 12, 16 or wider bit data may be stored
in the voxel map. In practice, the voxel map’s client needs to know the bit
dimensions of the individual voxels, as it needs to set the correct pixels in
the screen buffers for display, but no other part of the application needs
to be aware of this implementation detail.

We use the macrovoxel structure for both performance and storage
considerations. Computer memory and file systems are essentially one-
dimensional systems, where the only access to an individual data item is
by some index from a defined location. Mapping multi-dimensional data
into memory is essentially an exercise in bookkeeping, however, locality
of data is preserved only along one dimension - if the voxel at [X,Y,Z] is
adjacent to the voxel at [X+1,Y,Z], and the maximum dimensions of the
atlas are (m,n,o), then the distance to [X,Y,Z+1] is m x n voxels away. This
is an important consideration when accessing large data sets for two

reasons. First, modern processors use a cache to provide quick access to
recently used data, and nearby data - a fixed amount of data is moved into
a cache (a cache line), on the first access, and after this, the cached copy
of the data is accessed, rather than the data in RAM. Cache memory
access is much faster. If the data to be accessed during slicing is localized,
most of it can be loaded into cache, and processing speed enhanced. If it
isn’t cached, then the “cache hit rate” drops, and processing slows down.
Second, modern systems utilize a virtual memory manager (VMM), which
trades disk storage which is slow but capacious, for RAM memory, which
is more limited in capacity but much faster. When a particular memory
location that has been paged to disk is required, the VMM brings it into
RAM memory. This is a slow process, and so it is desirable to minimize
these page loads.

The macrovoxel architecture reduces some of the drawbacks of large
monolithic arrays. We group nearby voxels into a chunk, typically 16
voxels on edge. These chunks are then arranged into a structure we call a
voxel map (Figure 4). The voxel map comprises the atlas data, and is the
only entity to which the document class needs to maintain a reference. By
grouping voxels into these macrovoxels, we now have a data block that is
roughly the size of a VMM page, and also fits into a small number of
cache lines. Thus, any voxels (row, column, plane) that are spatially
adjacent are now also physically adjacent in memory, which improves
memory access performance. Consider an attempt to reslice an atlas: if
the slicing plane is coincident with the data set (i.e.. examining only a
single plane of data in an array) then only the data to be displayed, plus
possibly a cache line and/or VMM page frame on either side of the data
plane need to be moved. In this case, slicing the monolithic array will be
faster than a macrovoxel array, as in the latter 16 planes (based on a 16-
voxel on edge macrovoxel) will need to be moved. If, however the slicing
plane is perpendicular to the data set major axis (cuts across many array
planes), then given the nature of the array, much more data will need to
be moved for the monolithic array than for a macrovoxel array (Figure 5).

An additional advantage of the macrovoxel architecture is that it allows us
to eliminate empty voxels from storage. By empty voxels we mean those

voxels that exist outside the contour of the 3D image we are representing.
Biological images are rarely in the form of cubes or prisms, but that is
how most arrays (including macrovoxel arrays) represent data - this
representation means that location information may be computed given
the three dimensions of the array, rather than stored in some fashion. The
result is a reasonably compact data representation. This fails, however, if
the object being represented deviates significantly from a prism. In our
domain, brain imaging, the subject matter more closely approaches an
ovoid. This means that the voxels in the corner of the atlas volume have
no useful data in them. By breaking our atlas space up into macrovoxels,
we can identify macrovoxels that contain these empty voxels, and replace
that macrovoxel's entry in the volume map with a reference to a single
empty or "white" macrovoxel. This allows us to eliminate large amounts of
empty space, resulting in a reduced disk and memory footprint, with a
savings of typically 30%. (Figure 6)

Slicing

The actual slicing (Listing 3) is handled by taking the corners of the
virtual knife (the plane to be displayed on screen), and converting from
an atlas-based coordinate system, where the axis units are arbitrarily
defined relative to the atlas geometry, to a coordinate system where the
units are based on macrovoxel indexes. Atlas-based coordinates are
centered in atlas space, which facilitates the rotation and translation of
the virtual knife, while macrovoxel-based coordinates are based on the
upper front left macrovoxel, to facilitate memory accesses. This
conversion results in the useful property that the macrovoxel containing
any given voxel is specified by the whole number portion of the voxel's
coordinate. The fractional part is then scaled by the macrovoxel size
(usually 16 voxels) to give the exact voxel. This scaling thus allows voxel
address computation almost as efficiently as if a monolithic array were to
be used.

Once this scaling is completed, we divide opposite edges of the virtual
knife into segments corresponding to one of the dimensions of the display
space. From each of these segments, we project transect vectors to the
opposite side of the virtual knife, and divide these into segments

corresponding to the other dimension of display space. Each of these
segments now can be mapped directly to a voxel in our macrovoxel array,
and the image buffer is populated by iterating over the segments on the
virtual knife (Figure 7).

Finally, we provide a class to specify the virtual knife location. Any
changes to slicing angle or position are forwarded to this class, to which
the slicing classes refers. Using this mechanism, the slicing classes need
no knowledge of the basic document objects - they only need to know
about the data set to be sliced, the screen buffer the sliced image is
written to, and the virtual knife location.

Atlas construction

Atlas construction (via Gluclose) is essentially the reverse of atlas slicing.
First, an array of macrovoxels is created. Here, the entire array needs to
be allocated, as the final population will not be known until construction
is complete. Each pre-aligned frame comprising the data set is loaded, it's
location in atlas space determined either by data included with that file or
by it's position in the list of frames, and it's pixels converted to voxels and
written to the macrovoxel collection. During this process, gray values are
equalized or remapped based on any included calibration curves. Once all
frames have been loaded, the collection of macrovoxels is checked for
data content, and empty macrovoxels eliminated. The completed data set
is then written to disk. Delineations, in the form of outlines, are
accumulated and handled in a similar fashion. The final calibration curve,
a table of VOI names and display data, and coordinate system
transformation data are also written to file.

Human Interface

The human interface of MacOStat provides the user with a view of the
data set at the current virtual knife position and any associated
delineation, a schematic view of atlas space showing the position of the
virtual knife, and the necessary controls and menus to control the
application (Figures 8,9).

Using a control strip,(a utility window with icons representing commands)
the user can switch basic slicing axis or presentation: coronal, sagittal, or
horizontal. Rotation and translation of the virtual knife is also controlled
by this strip.

Navigation through atlas space is done by translating and rotating the
virtual knife. These actions are carried out via mouse movements: The
user selects the action desired from the navigation control strip, then
clicks and drags the mouse over either the view of the atlas slice, or over
the wire frame diagram of the virtual knife and atlas space. Dragging over
the wire frame provides coarse movement control, and the slice view
provides fine movement control. In both cases, the display content
changes to provide direct feedback to the user.

In addition, the rotation and translation of the virtual knife is provided in
the upper left corner of the wire frame window. In addition, a set of text
entry boxes are provided to allow the user to specify these values
numerically. Finally, a facility is provided to remember particular virtual
knife orientations, and recall them via a popup menu. These saved
positions can may be written to file, and loaded into memory.

Dragging the mouse over the atlas slice display itself also displays the X, Y
and Z coordinates of the mouse, expressed in atlas units. Data needed for
conversion of atlas coordinates to stereotaxic coordinates can be
embedded in the atlas data files, and will be used if available. In this case,
the mouse pointer location is expressed in stereotaxic coordinates rather
than the atlas-relative coordinates.

Atlas data sets may also contain delineation data; this data is shown either
as a colored outline on the gray-scale image, or as a translucent colored
area. Colors are user-selectable. In addition, the user may turn the
delineation display on or off, and may define a subset of individual
structures for display (Figure 9). Display lists complete with color
specifications may be saved to a file, and reloaded as desired. The file
itself is in the form of tab-delimited text, and so may be viewed and edited
with standard word processing and spreadsheet applications. Each
structure is specified by both an abbreviation and a name.

Finally, it is possible to save sequential virtual slices to individual data
files. To save these slices, the starting and stopping positions are marked,
and the number of slices and manner in which the virtual knife position is
interpolated is specified. For example, if the starting and stopping slices
are not parallel, one can specify that only the starting or stopping knife
angle should be used, the mean angle, or that the angle should be
interpolated across the span. Using this facility, the user can open
individual experimental sections and match them to the 3D atlas to
rapidly generate a set of matching planes that can then be employed in
delineation of the experimental data using Brain.

Software Availability

The software (MacOStat) may be downloaded without fee from
www.neuroterrain.org. It requires MacOS 8.6 and CarbonLib 1.3 or later.

Acknowledgment

This work was supported by NIH award P20 MH62009 and US Air Force
agreement F30602-00-2-0501

References
[1] Franklin, B. J. Keith, G. Paxinos, The Mouse Brain in Stereotaxic

Coordinates. Academic Press, San Diego, California 1997

[2] Paxinos, G., C. Watson, The Rat Brain in Stereotaxic Coordinates.
Academic Press, San Diego, California 1998

[3] Swanson, L. W., Brain Maps: Structure of the Rat Brain. Elsevier,
Amsterdam, Netherlands, 1992

[4] Mai, J. K., Assheuer, J., G. Paxinos, Atlas of the Human Brain.
Academic Press, San Diego, California 1997

[5] Toga, A. W., E. M. Santori, R. Hazani, K. Ambach. Rat Atlas Image
Database, http://www.loni.ucla.edu/Research_Loni/atlases/rat/

[6] Sundsten, J W. Digital Anatomist: Interactive Brain Atlas,
http://www9.biostr.washington.edu/da.html

[7] Kikinis, R. A DIGITAL BRAIN ATLAS FOR SURGICAL PLANNING,
MODEL DRIVEN SEGMENTATION AND TEACHING,
http://www.spl.harvard.edu:8000/pages/papers/atlas/text.html

[8] Sidman, R. L., B. Kosaras, B. Misra, S. Senft. High Resolution
Mouse Brain Atlas,
http://www.hms.harvard.edu/research/brain/

[9] Bertrand, L., J. Nissanov, 3D Atlas of the Mouse Brain, Computer
Vision Laboratory for Vertebrate Brain Mapping, Philadelphia,
2001. http://www.neuroterrain.org/

[10] Jones, E G. et al, (Resus atlas) UC Davis/UC San Diego Human
Brain Project,
http://neuroscience.ucdavis.edu/hbp/project2.html

[11] Flybrain, http://flybrain.neurobio.arizona.edu/Flybrain/html/

[12] VoxBlast http://www.vaytek.com/VoxBlast.html (commercial)

[13] Amira -- visualization and reconstruction for 3D image data.
http://www.amiravis.com (Commercial)

[14] IDL -- data analysis, visualization and application
development. http://www.rsinc.com/ (Commercial)

[15] Open Visualization Data Explorer -- an application and
development software package for visualizing 2D/3D data.
http://www.research.ibm.com/dx/ (IBM Public License)

[16] Lohmann, K., Gundelfinger, E. D., Scheich, H., Grimm, R.,
Tischmeyer, W., Richter, K., Hess, A. (1998) BrainView: a
computer program for reconstruction and interactive
visualization of 3D data sets. J Neurosci Methods 84(1-2) 143-
154.

[17] Apple Computer, Inc., MacApp,
http://developer.apple.com/tools/macapp/

[18] Nissanov, J., D.L. McEachron. 1991. Advances in image
processing for autoradiography. J. Chem. Neuroanat. 4:329-342.

Figures

Figure 1: Data model class hierarchy and interactions

Figure 2: View class hierarchy

Figure 3: Controller class hierarchy and interactions

Figure 4: Arrangement of microvoxels into macrovoxels, and
macrovoxels into an atlas.

Figure 5. Memory/cache accesses required for (a) macrovoxels vs.
(b) monolithic array design.

Figure 6. Actual space occupied by image data within the atlas
boundary.

Figure 7. Atlas reslicing. Transect vectors in the slicing plane (virtual
knife) are used to select microvoxels for display.

Figure 8. Navigation and control palettes

Figure 9. Horizontal, coronal, and saggital slices, with shaded VOIs,
and VOI selection dialog, taken from our mouse atlas [9]

